Copied to
clipboard

G = S3xC3.A4order 216 = 23·33

Direct product of S3 and C3.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: S3xC3.A4, C62.3C6, (C2xC6):C18, (C3xS3).A4, (C22xS3):C9, C3.4(S3xA4), C22:2(S3xC9), C32.2(C2xA4), C3:(C2xC3.A4), (S3xC2xC6).C3, (C3xC3.A4):1C2, (C2xC6).8(C3xS3), SmallGroup(216,98)

Series: Derived Chief Lower central Upper central

C1C2xC6 — S3xC3.A4
C1C3C2xC6C62C3xC3.A4 — S3xC3.A4
C2xC6 — S3xC3.A4
C1C3

Generators and relations for S3xC3.A4
 G = < a,b,c,d,e,f | a3=b2=c3=d2=e2=1, f3=c, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 158 in 45 conjugacy classes, 15 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C9, A4, C18, C3xS3, C2xA4, C3.A4, S3xC9, C2xC3.A4, S3xA4, S3xC3.A4
3C2
3C2
9C2
2C3
9C22
9C22
3C6
3C6
3C6
3S3
6C6
9C6
4C9
8C9
3C23
2C2xC6
3D6
3D6
9C2xC6
9C2xC6
3C3xC6
3C3xS3
12C18
4C3xC9
3C22xC6
2C3.A4
3S3xC6
3S3xC6
4S3xC9
3C2xC3.A4

Smallest permutation representation of S3xC3.A4
On 36 points
Generators in S36
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(28 34 31)(29 35 32)(30 36 33)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 28)(8 29)(9 30)(10 20)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 19)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 20)(2 21)(4 23)(5 24)(7 26)(8 27)(10 31)(11 32)(13 34)(14 35)(16 28)(17 29)
(2 21)(3 22)(5 24)(6 25)(8 27)(9 19)(11 32)(12 33)(14 35)(15 36)(17 29)(18 30)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,19), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,20)(2,21)(4,23)(5,24)(7,26)(8,27)(10,31)(11,32)(13,34)(14,35)(16,28)(17,29), (2,21)(3,22)(5,24)(6,25)(8,27)(9,19)(11,32)(12,33)(14,35)(15,36)(17,29)(18,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,19), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,20)(2,21)(4,23)(5,24)(7,26)(8,27)(10,31)(11,32)(13,34)(14,35)(16,28)(17,29), (2,21)(3,22)(5,24)(6,25)(8,27)(9,19)(11,32)(12,33)(14,35)(15,36)(17,29)(18,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(28,34,31),(29,35,32),(30,36,33)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,28),(8,29),(9,30),(10,20),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,19)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,20),(2,21),(4,23),(5,24),(7,26),(8,27),(10,31),(11,32),(13,34),(14,35),(16,28),(17,29)], [(2,21),(3,22),(5,24),(6,25),(8,27),(9,19),(11,32),(12,33),(14,35),(15,36),(17,29),(18,30)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

S3xC3.A4 is a maximal quotient of   Q8:C9:3S3

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I9A···9F9G···9L18A···18F
order1222333336666666669···99···918···18
size1339112223333666994···48···812···12

36 irreducible representations

dim111111222333366
type++++++
imageC1C2C3C6C9C18S3C3xS3S3xC9A4C2xA4C3.A4C2xC3.A4S3xA4S3xC3.A4
kernelS3xC3.A4C3xC3.A4S3xC2xC6C62C22xS3C2xC6C3.A4C2xC6C22C3xS3C32S3C3C3C1
# reps112266126112212

Matrix representation of S3xC3.A4 in GL5(F19)

77000
011000
00100
00010
00001
,
180000
131000
00100
00010
00001
,
10000
01000
00700
00070
00007
,
10000
01000
001800
001810
000018
,
10000
01000
00100
001180
001018
,
10000
01000
004110
000154
000150

G:=sub<GL(5,GF(19))| [7,0,0,0,0,7,11,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[18,13,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,18,18,0,0,0,0,1,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,11,15,15,0,0,0,4,0] >;

S3xC3.A4 in GAP, Magma, Sage, TeX

S_3\times C_3.A_4
% in TeX

G:=Group("S3xC3.A4");
// GroupNames label

G:=SmallGroup(216,98);
// by ID

G=gap.SmallGroup(216,98);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,2,-3,43,657,280,5189]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^2=e^2=1,f^3=c,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

Export

Subgroup lattice of S3xC3.A4 in TeX

׿
x
:
Z
F
o
wr
Q
<