extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3xS3) = C3xDic18 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.1(C3xS3) | 216,43 |
C12.2(C3xS3) = C3xD36 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.2(C3xS3) | 216,46 |
C12.3(C3xS3) = He3:3Q8 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 6- | C12.3(C3xS3) | 216,49 |
C12.4(C3xS3) = He3:4D4 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 36 | 6+ | C12.4(C3xS3) | 216,51 |
C12.5(C3xS3) = C36.C6 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 6- | C12.5(C3xS3) | 216,52 |
C12.6(C3xS3) = D36:C3 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 36 | 6+ | C12.6(C3xS3) | 216,54 |
C12.7(C3xS3) = C3xC32:4Q8 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | | C12.7(C3xS3) | 216,140 |
C12.8(C3xS3) = C3xC9:C8 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.8(C3xS3) | 216,12 |
C12.9(C3xS3) = He3:3C8 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 6 | C12.9(C3xS3) | 216,14 |
C12.10(C3xS3) = C9:C24 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 6 | C12.10(C3xS3) | 216,15 |
C12.11(C3xS3) = C12xD9 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.11(C3xS3) | 216,45 |
C12.12(C3xS3) = C4xC32:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 36 | 6 | C12.12(C3xS3) | 216,50 |
C12.13(C3xS3) = C4xC9:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 36 | 6 | C12.13(C3xS3) | 216,53 |
C12.14(C3xS3) = C3xC32:4C8 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | | C12.14(C3xS3) | 216,83 |
C12.15(C3xS3) = C9xDic6 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.15(C3xS3) | 216,44 |
C12.16(C3xS3) = C9xD12 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | 2 | C12.16(C3xS3) | 216,48 |
C12.17(C3xS3) = C32xDic6 | φ: C3xS3/C32 → C2 ⊆ Aut C12 | 72 | | C12.17(C3xS3) | 216,135 |
C12.18(C3xS3) = C9xC3:C8 | central extension (φ=1) | 72 | 2 | C12.18(C3xS3) | 216,13 |
C12.19(C3xS3) = S3xC36 | central extension (φ=1) | 72 | 2 | C12.19(C3xS3) | 216,47 |
C12.20(C3xS3) = C32xC3:C8 | central extension (φ=1) | 72 | | C12.20(C3xS3) | 216,82 |