Extensions 1→N→G→Q→1 with N=C12 and Q=C3xS3

Direct product G=NxQ with N=C12 and Q=C3xS3
dρLabelID
S3xC3xC1272S3xC3xC12216,136

Semidirect products G=N:Q with N=C12 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C12:1(C3xS3) = C3xC12:S3φ: C3xS3/C32C2 ⊆ Aut C1272C12:1(C3xS3)216,142
C12:2(C3xS3) = C12xC3:S3φ: C3xS3/C32C2 ⊆ Aut C1272C12:2(C3xS3)216,141
C12:3(C3xS3) = C32xD12φ: C3xS3/C32C2 ⊆ Aut C1272C12:3(C3xS3)216,137

Non-split extensions G=N.Q with N=C12 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C12.1(C3xS3) = C3xDic18φ: C3xS3/C32C2 ⊆ Aut C12722C12.1(C3xS3)216,43
C12.2(C3xS3) = C3xD36φ: C3xS3/C32C2 ⊆ Aut C12722C12.2(C3xS3)216,46
C12.3(C3xS3) = He3:3Q8φ: C3xS3/C32C2 ⊆ Aut C12726-C12.3(C3xS3)216,49
C12.4(C3xS3) = He3:4D4φ: C3xS3/C32C2 ⊆ Aut C12366+C12.4(C3xS3)216,51
C12.5(C3xS3) = C36.C6φ: C3xS3/C32C2 ⊆ Aut C12726-C12.5(C3xS3)216,52
C12.6(C3xS3) = D36:C3φ: C3xS3/C32C2 ⊆ Aut C12366+C12.6(C3xS3)216,54
C12.7(C3xS3) = C3xC32:4Q8φ: C3xS3/C32C2 ⊆ Aut C1272C12.7(C3xS3)216,140
C12.8(C3xS3) = C3xC9:C8φ: C3xS3/C32C2 ⊆ Aut C12722C12.8(C3xS3)216,12
C12.9(C3xS3) = He3:3C8φ: C3xS3/C32C2 ⊆ Aut C12726C12.9(C3xS3)216,14
C12.10(C3xS3) = C9:C24φ: C3xS3/C32C2 ⊆ Aut C12726C12.10(C3xS3)216,15
C12.11(C3xS3) = C12xD9φ: C3xS3/C32C2 ⊆ Aut C12722C12.11(C3xS3)216,45
C12.12(C3xS3) = C4xC32:C6φ: C3xS3/C32C2 ⊆ Aut C12366C12.12(C3xS3)216,50
C12.13(C3xS3) = C4xC9:C6φ: C3xS3/C32C2 ⊆ Aut C12366C12.13(C3xS3)216,53
C12.14(C3xS3) = C3xC32:4C8φ: C3xS3/C32C2 ⊆ Aut C1272C12.14(C3xS3)216,83
C12.15(C3xS3) = C9xDic6φ: C3xS3/C32C2 ⊆ Aut C12722C12.15(C3xS3)216,44
C12.16(C3xS3) = C9xD12φ: C3xS3/C32C2 ⊆ Aut C12722C12.16(C3xS3)216,48
C12.17(C3xS3) = C32xDic6φ: C3xS3/C32C2 ⊆ Aut C1272C12.17(C3xS3)216,135
C12.18(C3xS3) = C9xC3:C8central extension (φ=1)722C12.18(C3xS3)216,13
C12.19(C3xS3) = S3xC36central extension (φ=1)722C12.19(C3xS3)216,47
C12.20(C3xS3) = C32xC3:C8central extension (φ=1)72C12.20(C3xS3)216,82

׿
x
:
Z
F
o
wr
Q
<