Extensions 1→N→G→Q→1 with N=C26 and Q=D4

Direct product G=N×Q with N=C26 and Q=D4
dρLabelID
D4×C26104D4xC26208,46

Semidirect products G=N:Q with N=C26 and Q=D4
extensionφ:Q→Aut NdρLabelID
C261D4 = C2×D52φ: D4/C4C2 ⊆ Aut C26104C26:1D4208,37
C262D4 = C2×C13⋊D4φ: D4/C22C2 ⊆ Aut C26104C26:2D4208,44

Non-split extensions G=N.Q with N=C26 and Q=D4
extensionφ:Q→Aut NdρLabelID
C26.1D4 = C104⋊C2φ: D4/C4C2 ⊆ Aut C261042C26.1D4208,6
C26.2D4 = D104φ: D4/C4C2 ⊆ Aut C261042+C26.2D4208,7
C26.3D4 = Dic52φ: D4/C4C2 ⊆ Aut C262082-C26.3D4208,8
C26.4D4 = C523C4φ: D4/C4C2 ⊆ Aut C26208C26.4D4208,13
C26.5D4 = C26.D4φ: D4/C22C2 ⊆ Aut C26208C26.5D4208,12
C26.6D4 = D26⋊C4φ: D4/C22C2 ⊆ Aut C26104C26.6D4208,14
C26.7D4 = D4⋊D13φ: D4/C22C2 ⊆ Aut C261044+C26.7D4208,15
C26.8D4 = D4.D13φ: D4/C22C2 ⊆ Aut C261044-C26.8D4208,16
C26.9D4 = Q8⋊D13φ: D4/C22C2 ⊆ Aut C261044+C26.9D4208,17
C26.10D4 = C13⋊Q16φ: D4/C22C2 ⊆ Aut C262084-C26.10D4208,18
C26.11D4 = C23.D13φ: D4/C22C2 ⊆ Aut C26104C26.11D4208,19
C26.12D4 = C13×C22⋊C4central extension (φ=1)104C26.12D4208,21
C26.13D4 = C13×C4⋊C4central extension (φ=1)208C26.13D4208,22
C26.14D4 = C13×D8central extension (φ=1)1042C26.14D4208,25
C26.15D4 = C13×SD16central extension (φ=1)1042C26.15D4208,26
C26.16D4 = C13×Q16central extension (φ=1)2082C26.16D4208,27

׿
×
𝔽