metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D104, C13⋊1D8, C8⋊1D13, C104⋊1C2, D52⋊1C2, C2.4D52, C4.9D26, C26.2D4, C52.9C22, sometimes denoted D208 or Dih104 or Dih208, SmallGroup(208,7)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D104
G = < a,b | a104=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 104)(2 103)(3 102)(4 101)(5 100)(6 99)(7 98)(8 97)(9 96)(10 95)(11 94)(12 93)(13 92)(14 91)(15 90)(16 89)(17 88)(18 87)(19 86)(20 85)(21 84)(22 83)(23 82)(24 81)(25 80)(26 79)(27 78)(28 77)(29 76)(30 75)(31 74)(32 73)(33 72)(34 71)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)(41 64)(42 63)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 56)(50 55)(51 54)(52 53)
G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,104)(2,103)(3,102)(4,101)(5,100)(6,99)(7,98)(8,97)(9,96)(10,95)(11,94)(12,93)(13,92)(14,91)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,84)(22,83)(23,82)(24,81)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,104)(2,103)(3,102)(4,101)(5,100)(6,99)(7,98)(8,97)(9,96)(10,95)(11,94)(12,93)(13,92)(14,91)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,84)(22,83)(23,82)(24,81)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,104),(2,103),(3,102),(4,101),(5,100),(6,99),(7,98),(8,97),(9,96),(10,95),(11,94),(12,93),(13,92),(14,91),(15,90),(16,89),(17,88),(18,87),(19,86),(20,85),(21,84),(22,83),(23,82),(24,81),(25,80),(26,79),(27,78),(28,77),(29,76),(30,75),(31,74),(32,73),(33,72),(34,71),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65),(41,64),(42,63),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,56),(50,55),(51,54),(52,53)]])
D104 is a maximal subgroup of
D208 C16⋊D13 C13⋊D16 C8.6D26 D104⋊7C2 C8⋊D26 D8×D13 Q8⋊D26 D104⋊C2
D104 is a maximal quotient of
D208 C16⋊D13 Dic104 C104⋊5C4 D52⋊5C4
55 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 8A | 8B | 13A | ··· | 13F | 26A | ··· | 26F | 52A | ··· | 52L | 104A | ··· | 104X |
order | 1 | 2 | 2 | 2 | 4 | 8 | 8 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 | 104 | ··· | 104 |
size | 1 | 1 | 52 | 52 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
55 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D4 | D8 | D13 | D26 | D52 | D104 |
kernel | D104 | C104 | D52 | C26 | C13 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 6 | 6 | 12 | 24 |
Matrix representation of D104 ►in GL2(𝔽313) generated by
21 | 309 |
196 | 231 |
285 | 3 |
52 | 28 |
G:=sub<GL(2,GF(313))| [21,196,309,231],[285,52,3,28] >;
D104 in GAP, Magma, Sage, TeX
D_{104}
% in TeX
G:=Group("D104");
// GroupNames label
G:=SmallGroup(208,7);
// by ID
G=gap.SmallGroup(208,7);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-13,61,66,182,42,4804]);
// Polycyclic
G:=Group<a,b|a^104=b^2=1,b*a*b=a^-1>;
// generators/relations
Export