metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊2D13, C104⋊2C2, C2.3D52, C26.1D4, C4.8D26, C13⋊1SD16, D52.1C2, Dic26⋊1C2, C52.8C22, SmallGroup(208,6)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C104⋊C2
G = < a,b | a104=b2=1, bab=a51 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(2 52)(3 103)(4 50)(5 101)(6 48)(7 99)(8 46)(9 97)(10 44)(11 95)(12 42)(13 93)(14 40)(15 91)(16 38)(17 89)(18 36)(19 87)(20 34)(21 85)(22 32)(23 83)(24 30)(25 81)(26 28)(27 79)(29 77)(31 75)(33 73)(35 71)(37 69)(39 67)(41 65)(43 63)(45 61)(47 59)(49 57)(51 55)(54 104)(56 102)(58 100)(60 98)(62 96)(64 94)(66 92)(68 90)(70 88)(72 86)(74 84)(76 82)(78 80)
G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (2,52)(3,103)(4,50)(5,101)(6,48)(7,99)(8,46)(9,97)(10,44)(11,95)(12,42)(13,93)(14,40)(15,91)(16,38)(17,89)(18,36)(19,87)(20,34)(21,85)(22,32)(23,83)(24,30)(25,81)(26,28)(27,79)(29,77)(31,75)(33,73)(35,71)(37,69)(39,67)(41,65)(43,63)(45,61)(47,59)(49,57)(51,55)(54,104)(56,102)(58,100)(60,98)(62,96)(64,94)(66,92)(68,90)(70,88)(72,86)(74,84)(76,82)(78,80)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (2,52)(3,103)(4,50)(5,101)(6,48)(7,99)(8,46)(9,97)(10,44)(11,95)(12,42)(13,93)(14,40)(15,91)(16,38)(17,89)(18,36)(19,87)(20,34)(21,85)(22,32)(23,83)(24,30)(25,81)(26,28)(27,79)(29,77)(31,75)(33,73)(35,71)(37,69)(39,67)(41,65)(43,63)(45,61)(47,59)(49,57)(51,55)(54,104)(56,102)(58,100)(60,98)(62,96)(64,94)(66,92)(68,90)(70,88)(72,86)(74,84)(76,82)(78,80) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(2,52),(3,103),(4,50),(5,101),(6,48),(7,99),(8,46),(9,97),(10,44),(11,95),(12,42),(13,93),(14,40),(15,91),(16,38),(17,89),(18,36),(19,87),(20,34),(21,85),(22,32),(23,83),(24,30),(25,81),(26,28),(27,79),(29,77),(31,75),(33,73),(35,71),(37,69),(39,67),(41,65),(43,63),(45,61),(47,59),(49,57),(51,55),(54,104),(56,102),(58,100),(60,98),(62,96),(64,94),(66,92),(68,90),(70,88),(72,86),(74,84),(76,82),(78,80)]])
C104⋊C2 is a maximal subgroup of
D104⋊7C2 C8⋊D26 C8.D26 D8⋊D13 SD16×D13 D26.6D4 Q16⋊D13
C104⋊C2 is a maximal quotient of C52.44D4 C104⋊6C4 D52⋊5C4
55 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 8A | 8B | 13A | ··· | 13F | 26A | ··· | 26F | 52A | ··· | 52L | 104A | ··· | 104X |
order | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 | 104 | ··· | 104 |
size | 1 | 1 | 52 | 2 | 52 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
55 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | D4 | SD16 | D13 | D26 | D52 | C104⋊C2 |
kernel | C104⋊C2 | C104 | Dic26 | D52 | C26 | C13 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 6 | 6 | 12 | 24 |
Matrix representation of C104⋊C2 ►in GL2(𝔽313) generated by
174 | 36 |
25 | 266 |
135 | 115 |
13 | 178 |
G:=sub<GL(2,GF(313))| [174,25,36,266],[135,13,115,178] >;
C104⋊C2 in GAP, Magma, Sage, TeX
C_{104}\rtimes C_2
% in TeX
G:=Group("C104:C2");
// GroupNames label
G:=SmallGroup(208,6);
// by ID
G=gap.SmallGroup(208,6);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-13,61,26,182,42,4804]);
// Polycyclic
G:=Group<a,b|a^104=b^2=1,b*a*b=a^51>;
// generators/relations
Export