Extensions 1→N→G→Q→1 with N=C10 and Q=D10

Direct product G=N×Q with N=C10 and Q=D10
dρLabelID
D5×C2×C1040D5xC2xC10200,50

Semidirect products G=N:Q with N=C10 and Q=D10
extensionφ:Q→Aut NdρLabelID
C101D10 = C2×D52φ: D10/D5C2 ⊆ Aut C10204+C10:1D10200,49
C102D10 = C22×C5⋊D5φ: D10/C10C2 ⊆ Aut C10100C10:2D10200,51

Non-split extensions G=N.Q with N=C10 and Q=D10
extensionφ:Q→Aut NdρLabelID
C10.1D10 = D5×Dic5φ: D10/D5C2 ⊆ Aut C10404-C10.1D10200,22
C10.2D10 = Dic52D5φ: D10/D5C2 ⊆ Aut C10204+C10.2D10200,23
C10.3D10 = C522D4φ: D10/D5C2 ⊆ Aut C10404-C10.3D10200,24
C10.4D10 = C5⋊D20φ: D10/D5C2 ⊆ Aut C10204+C10.4D10200,25
C10.5D10 = C522Q8φ: D10/D5C2 ⊆ Aut C10404-C10.5D10200,26
C10.6D10 = Dic50φ: D10/C10C2 ⊆ Aut C102002-C10.6D10200,4
C10.7D10 = C4×D25φ: D10/C10C2 ⊆ Aut C101002C10.7D10200,5
C10.8D10 = D100φ: D10/C10C2 ⊆ Aut C101002+C10.8D10200,6
C10.9D10 = C2×Dic25φ: D10/C10C2 ⊆ Aut C10200C10.9D10200,7
C10.10D10 = C25⋊D4φ: D10/C10C2 ⊆ Aut C101002C10.10D10200,8
C10.11D10 = C22×D25φ: D10/C10C2 ⊆ Aut C10100C10.11D10200,13
C10.12D10 = C524Q8φ: D10/C10C2 ⊆ Aut C10200C10.12D10200,32
C10.13D10 = C4×C5⋊D5φ: D10/C10C2 ⊆ Aut C10100C10.13D10200,33
C10.14D10 = C20⋊D5φ: D10/C10C2 ⊆ Aut C10100C10.14D10200,34
C10.15D10 = C2×C526C4φ: D10/C10C2 ⊆ Aut C10200C10.15D10200,35
C10.16D10 = C527D4φ: D10/C10C2 ⊆ Aut C10100C10.16D10200,36
C10.17D10 = C5×Dic10central extension (φ=1)402C10.17D10200,27
C10.18D10 = D5×C20central extension (φ=1)402C10.18D10200,28
C10.19D10 = C5×D20central extension (φ=1)402C10.19D10200,29
C10.20D10 = C10×Dic5central extension (φ=1)40C10.20D10200,30
C10.21D10 = C5×C5⋊D4central extension (φ=1)202C10.21D10200,31

׿
×
𝔽