Copied to
clipboard

G = D5xDic5order 200 = 23·52

Direct product of D5 and Dic5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D5xDic5, D10.2D5, C10.1D10, C2.1D52, C5:4(C4xD5), (C5xD5):4C4, C52:7(C2xC4), C5:2(C2xDic5), C52:6C4:1C2, (C5xDic5):2C2, (D5xC10).1C2, (C5xC10).1C22, SmallGroup(200,22)

Series: Derived Chief Lower central Upper central

C1C52 — D5xDic5
C1C5C52C5xC10D5xC10 — D5xDic5
C52 — D5xDic5
C1C2

Generators and relations for D5xDic5
 G = < a,b,c,d | a5=b2=c10=1, d2=c5, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 156 in 38 conjugacy classes, 18 normal (14 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D5, Dic5, D10, C4xD5, C2xDic5, D52, D5xDic5
5C2
5C2
2C5
2C5
5C4
5C22
25C4
2C10
2C10
5C10
5C10
25C2xC4
5C20
5C2xC10
5Dic5
5Dic5
10Dic5
10Dic5
5C2xDic5
5C4xD5

Smallest permutation representation of D5xDic5
On 40 points
Generators in S40
(1 5 9 3 7)(2 6 10 4 8)(11 17 13 19 15)(12 18 14 20 16)(21 27 23 29 25)(22 28 24 30 26)(31 35 39 33 37)(32 36 40 34 38)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 21)(8 22)(9 23)(10 24)(11 37)(12 38)(13 39)(14 40)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 14 6 19)(2 13 7 18)(3 12 8 17)(4 11 9 16)(5 20 10 15)(21 34 26 39)(22 33 27 38)(23 32 28 37)(24 31 29 36)(25 40 30 35)

G:=sub<Sym(40)| (1,5,9,3,7)(2,6,10,4,8)(11,17,13,19,15)(12,18,14,20,16)(21,27,23,29,25)(22,28,24,30,26)(31,35,39,33,37)(32,36,40,34,38), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,14,6,19)(2,13,7,18)(3,12,8,17)(4,11,9,16)(5,20,10,15)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35)>;

G:=Group( (1,5,9,3,7)(2,6,10,4,8)(11,17,13,19,15)(12,18,14,20,16)(21,27,23,29,25)(22,28,24,30,26)(31,35,39,33,37)(32,36,40,34,38), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,14,6,19)(2,13,7,18)(3,12,8,17)(4,11,9,16)(5,20,10,15)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35) );

G=PermutationGroup([[(1,5,9,3,7),(2,6,10,4,8),(11,17,13,19,15),(12,18,14,20,16),(21,27,23,29,25),(22,28,24,30,26),(31,35,39,33,37),(32,36,40,34,38)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,21),(8,22),(9,23),(10,24),(11,37),(12,38),(13,39),(14,40),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,14,6,19),(2,13,7,18),(3,12,8,17),(4,11,9,16),(5,20,10,15),(21,34,26,39),(22,33,27,38),(23,32,28,37),(24,31,29,36),(25,40,30,35)]])

D5xDic5 is a maximal subgroup of
D5.Dic10  D10.F5  D10.2F5  C52:4M4(2)  D20:5D5  D20:D5  C4xD52  Dic5.D10  D10.4D10
D5xDic5 is a maximal quotient of
C20.30D10  D10:Dic5  Dic5:Dic5

32 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H10I10J10K10L20A20B20C20D
order122244445555555510101010101010101010101020202020
size115555252522224444222244441010101010101010

32 irreducible representations

dim111112222244
type++++++-++-
imageC1C2C2C2C4D5D5Dic5D10C4xD5D52D5xDic5
kernelD5xDic5C5xDic5C52:6C4D5xC10C5xD5Dic5D10D5C10C5C2C1
# reps111142244444

Matrix representation of D5xDic5 in GL4(F41) generated by

1000
0100
00640
0010
,
40000
04000
00640
003535
,
35100
40000
0010
0001
,
9000
133200
0010
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,6,1,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,6,35,0,0,40,35],[35,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[9,13,0,0,0,32,0,0,0,0,1,0,0,0,0,1] >;

D5xDic5 in GAP, Magma, Sage, TeX

D_5\times {\rm Dic}_5
% in TeX

G:=Group("D5xDic5");
// GroupNames label

G:=SmallGroup(200,22);
// by ID

G=gap.SmallGroup(200,22);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,26,328,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^10=1,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D5xDic5 in TeX

׿
x
:
Z
F
o
wr
Q
<