Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C18

Direct product G=N×Q with N=C6 and Q=C2×C18
dρLabelID
C2×C6×C18216C2xC6xC18216,114

Semidirect products G=N:Q with N=C6 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×C18) = S3×C2×C18φ: C2×C18/C18C2 ⊆ Aut C672C6:(C2xC18)216,109

Non-split extensions G=N.Q with N=C6 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C18) = C9×Dic6φ: C2×C18/C18C2 ⊆ Aut C6722C6.1(C2xC18)216,44
C6.2(C2×C18) = S3×C36φ: C2×C18/C18C2 ⊆ Aut C6722C6.2(C2xC18)216,47
C6.3(C2×C18) = C9×D12φ: C2×C18/C18C2 ⊆ Aut C6722C6.3(C2xC18)216,48
C6.4(C2×C18) = Dic3×C18φ: C2×C18/C18C2 ⊆ Aut C672C6.4(C2xC18)216,56
C6.5(C2×C18) = C9×C3⋊D4φ: C2×C18/C18C2 ⊆ Aut C6362C6.5(C2xC18)216,58
C6.6(C2×C18) = D4×C27central extension (φ=1)1082C6.6(C2xC18)216,10
C6.7(C2×C18) = Q8×C27central extension (φ=1)2162C6.7(C2xC18)216,11
C6.8(C2×C18) = D4×C3×C9central extension (φ=1)108C6.8(C2xC18)216,76
C6.9(C2×C18) = Q8×C3×C9central extension (φ=1)216C6.9(C2xC18)216,79

׿
×
𝔽