direct product, metabelian, supersoluble, monomial, A-group
Aliases: S3×C2×C18, C62.12C6, C6⋊(C2×C18), (C2×C6)⋊5C18, (C6×C18)⋊3C2, C3⋊(C22×C18), (C3×C9)⋊2C23, (S3×C6).5C6, C6.34(S3×C6), (C3×C18)⋊2C22, C32.2(C22×C6), C3.4(S3×C2×C6), (C3×S3).(C2×C6), (S3×C2×C6).2C3, (C3×C6).23(C2×C6), (C2×C6).21(C3×S3), SmallGroup(216,109)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C2×C18 |
Generators and relations for S3×C2×C18
G = < a,b,c,d | a2=b18=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 182 in 106 conjugacy classes, 63 normal (15 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C9, C9, C32, D6, C2×C6, C2×C6, C18, C18, C3×S3, C3×C6, C22×S3, C22×C6, C3×C9, C2×C18, C2×C18, S3×C6, C62, S3×C9, C3×C18, C22×C18, S3×C2×C6, S3×C18, C6×C18, S3×C2×C18
Quotients: C1, C2, C3, C22, S3, C6, C23, C9, D6, C2×C6, C18, C3×S3, C22×S3, C22×C6, C2×C18, S3×C6, S3×C9, C22×C18, S3×C2×C6, S3×C18, S3×C2×C18
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)(55 67 61)(56 68 62)(57 69 63)(58 70 64)(59 71 65)(60 72 66)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 37)(15 38)(16 39)(17 40)(18 41)(19 70)(20 71)(21 72)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)
G:=sub<Sym(72)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,37)(15,38)(16,39)(17,40)(18,41)(19,70)(20,71)(21,72)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,37)(15,38)(16,39)(17,40)(18,41)(19,70)(20,71)(21,72)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48),(55,67,61),(56,68,62),(57,69,63),(58,70,64),(59,71,65),(60,72,66)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,37),(15,38),(16,39),(17,40),(18,41),(19,70),(20,71),(21,72),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69)]])
S3×C2×C18 is a maximal subgroup of
D6⋊Dic9
108 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 6A | ··· | 6F | 6G | ··· | 6O | 6P | ··· | 6W | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18R | 18S | ··· | 18AJ | 18AK | ··· | 18BH |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | C9 | C18 | C18 | S3 | D6 | C3×S3 | S3×C6 | S3×C9 | S3×C18 |
kernel | S3×C2×C18 | S3×C18 | C6×C18 | S3×C2×C6 | S3×C6 | C62 | C22×S3 | D6 | C2×C6 | C2×C18 | C18 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 6 | 1 | 2 | 12 | 2 | 6 | 36 | 6 | 1 | 3 | 2 | 6 | 6 | 18 |
Matrix representation of S3×C2×C18 ►in GL3(𝔽19) generated by
18 | 0 | 0 |
0 | 18 | 0 |
0 | 0 | 18 |
3 | 0 | 0 |
0 | 17 | 0 |
0 | 0 | 17 |
1 | 0 | 0 |
0 | 7 | 7 |
0 | 0 | 11 |
18 | 0 | 0 |
0 | 1 | 0 |
0 | 6 | 18 |
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[3,0,0,0,17,0,0,0,17],[1,0,0,0,7,0,0,7,11],[18,0,0,0,1,6,0,0,18] >;
S3×C2×C18 in GAP, Magma, Sage, TeX
S_3\times C_2\times C_{18}
% in TeX
G:=Group("S3xC2xC18");
// GroupNames label
G:=SmallGroup(216,109);
// by ID
G=gap.SmallGroup(216,109);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,93,5189]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^18=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations