Copied to
clipboard

G = S3×C2×C18order 216 = 23·33

Direct product of C2×C18 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×C2×C18, C62.12C6, C6⋊(C2×C18), (C2×C6)⋊5C18, (C6×C18)⋊3C2, C3⋊(C22×C18), (C3×C9)⋊2C23, (S3×C6).5C6, C6.34(S3×C6), (C3×C18)⋊2C22, C32.2(C22×C6), C3.4(S3×C2×C6), (C3×S3).(C2×C6), (S3×C2×C6).2C3, (C3×C6).23(C2×C6), (C2×C6).21(C3×S3), SmallGroup(216,109)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C2×C18
C1C3C32C3×C9S3×C9S3×C18 — S3×C2×C18
C3 — S3×C2×C18
C1C2×C18

Generators and relations for S3×C2×C18
 G = < a,b,c,d | a2=b18=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 182 in 106 conjugacy classes, 63 normal (15 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C9, C9, C32, D6, C2×C6, C2×C6, C18, C18, C3×S3, C3×C6, C22×S3, C22×C6, C3×C9, C2×C18, C2×C18, S3×C6, C62, S3×C9, C3×C18, C22×C18, S3×C2×C6, S3×C18, C6×C18, S3×C2×C18
Quotients: C1, C2, C3, C22, S3, C6, C23, C9, D6, C2×C6, C18, C3×S3, C22×S3, C22×C6, C2×C18, S3×C6, S3×C9, C22×C18, S3×C2×C6, S3×C18, S3×C2×C18

Smallest permutation representation of S3×C2×C18
On 72 points
Generators in S72
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)(55 67 61)(56 68 62)(57 69 63)(58 70 64)(59 71 65)(60 72 66)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 37)(15 38)(16 39)(17 40)(18 41)(19 70)(20 71)(21 72)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)

G:=sub<Sym(72)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,37)(15,38)(16,39)(17,40)(18,41)(19,70)(20,71)(21,72)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,37)(15,38)(16,39)(17,40)(18,41)(19,70)(20,71)(21,72)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69) );

G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48),(55,67,61),(56,68,62),(57,69,63),(58,70,64),(59,71,65),(60,72,66)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,37),(15,38),(16,39),(17,40),(18,41),(19,70),(20,71),(21,72),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69)]])

S3×C2×C18 is a maximal subgroup of   D6⋊Dic9

108 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E6A···6F6G···6O6P···6W9A···9F9G···9L18A···18R18S···18AJ18AK···18BH
order12222222333336···66···66···69···99···918···1818···1818···18
size11113333112221···12···23···31···12···21···12···23···3

108 irreducible representations

dim111111111222222
type+++++
imageC1C2C2C3C6C6C9C18C18S3D6C3×S3S3×C6S3×C9S3×C18
kernelS3×C2×C18S3×C18C6×C18S3×C2×C6S3×C6C62C22×S3D6C2×C6C2×C18C18C2×C6C6C22C2
# reps161212263661326618

Matrix representation of S3×C2×C18 in GL3(𝔽19) generated by

1800
0180
0018
,
300
0170
0017
,
100
077
0011
,
1800
010
0618
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[3,0,0,0,17,0,0,0,17],[1,0,0,0,7,0,0,7,11],[18,0,0,0,1,6,0,0,18] >;

S3×C2×C18 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_{18}
% in TeX

G:=Group("S3xC2xC18");
// GroupNames label

G:=SmallGroup(216,109);
// by ID

G=gap.SmallGroup(216,109);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,93,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^18=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽