Extensions 1→N→G→Q→1 with N=C18 and Q=C2×C6

Direct product G=N×Q with N=C18 and Q=C2×C6
dρLabelID
C2×C6×C18216C2xC6xC18216,114

Semidirect products G=N:Q with N=C18 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C18⋊(C2×C6) = C22×C9⋊C6φ: C2×C6/C2C6 ⊆ Aut C1836C18:(C2xC6)216,111
C182(C2×C6) = C23×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C1872C18:2(C2xC6)216,116
C183(C2×C6) = C2×C6×D9φ: C2×C6/C6C2 ⊆ Aut C1872C18:3(C2xC6)216,108

Non-split extensions G=N.Q with N=C18 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C18.1(C2×C6) = C36.C6φ: C2×C6/C2C6 ⊆ Aut C18726-C18.1(C2xC6)216,52
C18.2(C2×C6) = C4×C9⋊C6φ: C2×C6/C2C6 ⊆ Aut C18366C18.2(C2xC6)216,53
C18.3(C2×C6) = D36⋊C3φ: C2×C6/C2C6 ⊆ Aut C18366+C18.3(C2xC6)216,54
C18.4(C2×C6) = C2×C9⋊C12φ: C2×C6/C2C6 ⊆ Aut C1872C18.4(C2xC6)216,61
C18.5(C2×C6) = Dic9⋊C6φ: C2×C6/C2C6 ⊆ Aut C18366C18.5(C2xC6)216,62
C18.6(C2×C6) = C2×C4×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C1872C18.6(C2xC6)216,75
C18.7(C2×C6) = D4×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C18366C18.7(C2xC6)216,78
C18.8(C2×C6) = Q8×3- 1+2φ: C2×C6/C22C3 ⊆ Aut C18726C18.8(C2xC6)216,81
C18.9(C2×C6) = C3×Dic18φ: C2×C6/C6C2 ⊆ Aut C18722C18.9(C2xC6)216,43
C18.10(C2×C6) = C12×D9φ: C2×C6/C6C2 ⊆ Aut C18722C18.10(C2xC6)216,45
C18.11(C2×C6) = C3×D36φ: C2×C6/C6C2 ⊆ Aut C18722C18.11(C2xC6)216,46
C18.12(C2×C6) = C6×Dic9φ: C2×C6/C6C2 ⊆ Aut C1872C18.12(C2xC6)216,55
C18.13(C2×C6) = C3×C9⋊D4φ: C2×C6/C6C2 ⊆ Aut C18362C18.13(C2xC6)216,57
C18.14(C2×C6) = D4×C27central extension (φ=1)1082C18.14(C2xC6)216,10
C18.15(C2×C6) = Q8×C27central extension (φ=1)2162C18.15(C2xC6)216,11
C18.16(C2×C6) = D4×C3×C9central extension (φ=1)108C18.16(C2xC6)216,76
C18.17(C2×C6) = Q8×C3×C9central extension (φ=1)216C18.17(C2xC6)216,79

׿
×
𝔽