extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C2xC6) = C36.C6 | φ: C2xC6/C2 → C6 ⊆ Aut C18 | 72 | 6- | C18.1(C2xC6) | 216,52 |
C18.2(C2xC6) = C4xC9:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C18 | 36 | 6 | C18.2(C2xC6) | 216,53 |
C18.3(C2xC6) = D36:C3 | φ: C2xC6/C2 → C6 ⊆ Aut C18 | 36 | 6+ | C18.3(C2xC6) | 216,54 |
C18.4(C2xC6) = C2xC9:C12 | φ: C2xC6/C2 → C6 ⊆ Aut C18 | 72 | | C18.4(C2xC6) | 216,61 |
C18.5(C2xC6) = Dic9:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C18 | 36 | 6 | C18.5(C2xC6) | 216,62 |
C18.6(C2xC6) = C2xC4x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C18 | 72 | | C18.6(C2xC6) | 216,75 |
C18.7(C2xC6) = D4x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C18 | 36 | 6 | C18.7(C2xC6) | 216,78 |
C18.8(C2xC6) = Q8x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C18 | 72 | 6 | C18.8(C2xC6) | 216,81 |
C18.9(C2xC6) = C3xDic18 | φ: C2xC6/C6 → C2 ⊆ Aut C18 | 72 | 2 | C18.9(C2xC6) | 216,43 |
C18.10(C2xC6) = C12xD9 | φ: C2xC6/C6 → C2 ⊆ Aut C18 | 72 | 2 | C18.10(C2xC6) | 216,45 |
C18.11(C2xC6) = C3xD36 | φ: C2xC6/C6 → C2 ⊆ Aut C18 | 72 | 2 | C18.11(C2xC6) | 216,46 |
C18.12(C2xC6) = C6xDic9 | φ: C2xC6/C6 → C2 ⊆ Aut C18 | 72 | | C18.12(C2xC6) | 216,55 |
C18.13(C2xC6) = C3xC9:D4 | φ: C2xC6/C6 → C2 ⊆ Aut C18 | 36 | 2 | C18.13(C2xC6) | 216,57 |
C18.14(C2xC6) = D4xC27 | central extension (φ=1) | 108 | 2 | C18.14(C2xC6) | 216,10 |
C18.15(C2xC6) = Q8xC27 | central extension (φ=1) | 216 | 2 | C18.15(C2xC6) | 216,11 |
C18.16(C2xC6) = D4xC3xC9 | central extension (φ=1) | 108 | | C18.16(C2xC6) | 216,76 |
C18.17(C2xC6) = Q8xC3xC9 | central extension (φ=1) | 216 | | C18.17(C2xC6) | 216,79 |