extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C2×C6) = C36.C6 | φ: C2×C6/C2 → C6 ⊆ Aut C18 | 72 | 6- | C18.1(C2xC6) | 216,52 |
C18.2(C2×C6) = C4×C9⋊C6 | φ: C2×C6/C2 → C6 ⊆ Aut C18 | 36 | 6 | C18.2(C2xC6) | 216,53 |
C18.3(C2×C6) = D36⋊C3 | φ: C2×C6/C2 → C6 ⊆ Aut C18 | 36 | 6+ | C18.3(C2xC6) | 216,54 |
C18.4(C2×C6) = C2×C9⋊C12 | φ: C2×C6/C2 → C6 ⊆ Aut C18 | 72 | | C18.4(C2xC6) | 216,61 |
C18.5(C2×C6) = Dic9⋊C6 | φ: C2×C6/C2 → C6 ⊆ Aut C18 | 36 | 6 | C18.5(C2xC6) | 216,62 |
C18.6(C2×C6) = C2×C4×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C18 | 72 | | C18.6(C2xC6) | 216,75 |
C18.7(C2×C6) = D4×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C18 | 36 | 6 | C18.7(C2xC6) | 216,78 |
C18.8(C2×C6) = Q8×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C18 | 72 | 6 | C18.8(C2xC6) | 216,81 |
C18.9(C2×C6) = C3×Dic18 | φ: C2×C6/C6 → C2 ⊆ Aut C18 | 72 | 2 | C18.9(C2xC6) | 216,43 |
C18.10(C2×C6) = C12×D9 | φ: C2×C6/C6 → C2 ⊆ Aut C18 | 72 | 2 | C18.10(C2xC6) | 216,45 |
C18.11(C2×C6) = C3×D36 | φ: C2×C6/C6 → C2 ⊆ Aut C18 | 72 | 2 | C18.11(C2xC6) | 216,46 |
C18.12(C2×C6) = C6×Dic9 | φ: C2×C6/C6 → C2 ⊆ Aut C18 | 72 | | C18.12(C2xC6) | 216,55 |
C18.13(C2×C6) = C3×C9⋊D4 | φ: C2×C6/C6 → C2 ⊆ Aut C18 | 36 | 2 | C18.13(C2xC6) | 216,57 |
C18.14(C2×C6) = D4×C27 | central extension (φ=1) | 108 | 2 | C18.14(C2xC6) | 216,10 |
C18.15(C2×C6) = Q8×C27 | central extension (φ=1) | 216 | 2 | C18.15(C2xC6) | 216,11 |
C18.16(C2×C6) = D4×C3×C9 | central extension (φ=1) | 108 | | C18.16(C2xC6) | 216,76 |
C18.17(C2×C6) = Q8×C3×C9 | central extension (φ=1) | 216 | | C18.17(C2xC6) | 216,79 |