Extensions 1→N→G→Q→1 with N=C9×Dic3 and Q=C2

Direct product G=N×Q with N=C9×Dic3 and Q=C2
dρLabelID
Dic3×C1872Dic3xC18216,56

Semidirect products G=N:Q with N=C9×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×Dic3)⋊1C2 = C3⋊D36φ: C2/C1C2 ⊆ Out C9×Dic3364+(C9xDic3):1C2216,29
(C9×Dic3)⋊2C2 = Dic3×D9φ: C2/C1C2 ⊆ Out C9×Dic3724-(C9xDic3):2C2216,27
(C9×Dic3)⋊3C2 = C18.D6φ: C2/C1C2 ⊆ Out C9×Dic3364+(C9xDic3):3C2216,28
(C9×Dic3)⋊4C2 = C9×C3⋊D4φ: C2/C1C2 ⊆ Out C9×Dic3362(C9xDic3):4C2216,58
(C9×Dic3)⋊5C2 = S3×C36φ: trivial image722(C9xDic3):5C2216,47

Non-split extensions G=N.Q with N=C9×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×Dic3).1C2 = C9⋊Dic6φ: C2/C1C2 ⊆ Out C9×Dic3724-(C9xDic3).1C2216,26
(C9×Dic3).2C2 = C9×Dic6φ: C2/C1C2 ⊆ Out C9×Dic3722(C9xDic3).2C2216,44

׿
×
𝔽