direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D114, C2×D57, C38⋊S3, C6⋊D19, C19⋊2D6, C3⋊2D38, C114⋊1C2, C57⋊2C22, sometimes denoted D228 or Dih114 or Dih228, SmallGroup(228,14)
Series: Derived ►Chief ►Lower central ►Upper central
| C57 — D114 |
Generators and relations for D114
G = < a,b | a114=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)
(1 114)(2 113)(3 112)(4 111)(5 110)(6 109)(7 108)(8 107)(9 106)(10 105)(11 104)(12 103)(13 102)(14 101)(15 100)(16 99)(17 98)(18 97)(19 96)(20 95)(21 94)(22 93)(23 92)(24 91)(25 90)(26 89)(27 88)(28 87)(29 86)(30 85)(31 84)(32 83)(33 82)(34 81)(35 80)(36 79)(37 78)(38 77)(39 76)(40 75)(41 74)(42 73)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 63)(53 62)(54 61)(55 60)(56 59)(57 58)
G:=sub<Sym(114)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,114)(2,113)(3,112)(4,111)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,104)(12,103)(13,102)(14,101)(15,100)(16,99)(17,98)(18,97)(19,96)(20,95)(21,94)(22,93)(23,92)(24,91)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,114)(2,113)(3,112)(4,111)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,104)(12,103)(13,102)(14,101)(15,100)(16,99)(17,98)(18,97)(19,96)(20,95)(21,94)(22,93)(23,92)(24,91)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)], [(1,114),(2,113),(3,112),(4,111),(5,110),(6,109),(7,108),(8,107),(9,106),(10,105),(11,104),(12,103),(13,102),(14,101),(15,100),(16,99),(17,98),(18,97),(19,96),(20,95),(21,94),(22,93),(23,92),(24,91),(25,90),(26,89),(27,88),(28,87),(29,86),(30,85),(31,84),(32,83),(33,82),(34,81),(35,80),(36,79),(37,78),(38,77),(39,76),(40,75),(41,74),(42,73),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,63),(53,62),(54,61),(55,60),(56,59),(57,58)]])
D114 is a maximal subgroup of
D57⋊C4 C3⋊D76 C19⋊D12 D228 C57⋊7D4 C2×S3×D19
D114 is a maximal quotient of Dic114 D228 C57⋊7D4
60 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3 | 6 | 19A | ··· | 19I | 38A | ··· | 38I | 57A | ··· | 57R | 114A | ··· | 114R |
| order | 1 | 2 | 2 | 2 | 3 | 6 | 19 | ··· | 19 | 38 | ··· | 38 | 57 | ··· | 57 | 114 | ··· | 114 |
| size | 1 | 1 | 57 | 57 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
60 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + |
| image | C1 | C2 | C2 | S3 | D6 | D19 | D38 | D57 | D114 |
| kernel | D114 | D57 | C114 | C38 | C19 | C6 | C3 | C2 | C1 |
| # reps | 1 | 2 | 1 | 1 | 1 | 9 | 9 | 18 | 18 |
Matrix representation of D114 ►in GL3(𝔽229) generated by
| 228 | 0 | 0 |
| 0 | 175 | 132 |
| 0 | 197 | 57 |
| 1 | 0 | 0 |
| 0 | 86 | 147 |
| 0 | 160 | 143 |
G:=sub<GL(3,GF(229))| [228,0,0,0,175,197,0,132,57],[1,0,0,0,86,160,0,147,143] >;
D114 in GAP, Magma, Sage, TeX
D_{114} % in TeX
G:=Group("D114"); // GroupNames label
G:=SmallGroup(228,14);
// by ID
G=gap.SmallGroup(228,14);
# by ID
G:=PCGroup([4,-2,-2,-3,-19,98,3459]);
// Polycyclic
G:=Group<a,b|a^114=b^2=1,b*a*b=a^-1>;
// generators/relations
Export