Copied to
clipboard

G = D114order 228 = 22·3·19

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D114, C2×D57, C38⋊S3, C6⋊D19, C192D6, C32D38, C1141C2, C572C22, sometimes denoted D228 or Dih114 or Dih228, SmallGroup(228,14)

Series: Derived Chief Lower central Upper central

C1C57 — D114
C1C19C57D57 — D114
C57 — D114
C1C2

Generators and relations for D114
 G = < a,b | a114=b2=1, bab=a-1 >

57C2
57C2
57C22
19S3
19S3
3D19
3D19
19D6
3D38

Smallest permutation representation of D114
On 114 points
Generators in S114
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)
(1 114)(2 113)(3 112)(4 111)(5 110)(6 109)(7 108)(8 107)(9 106)(10 105)(11 104)(12 103)(13 102)(14 101)(15 100)(16 99)(17 98)(18 97)(19 96)(20 95)(21 94)(22 93)(23 92)(24 91)(25 90)(26 89)(27 88)(28 87)(29 86)(30 85)(31 84)(32 83)(33 82)(34 81)(35 80)(36 79)(37 78)(38 77)(39 76)(40 75)(41 74)(42 73)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 63)(53 62)(54 61)(55 60)(56 59)(57 58)

G:=sub<Sym(114)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,114)(2,113)(3,112)(4,111)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,104)(12,103)(13,102)(14,101)(15,100)(16,99)(17,98)(18,97)(19,96)(20,95)(21,94)(22,93)(23,92)(24,91)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,114)(2,113)(3,112)(4,111)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,104)(12,103)(13,102)(14,101)(15,100)(16,99)(17,98)(18,97)(19,96)(20,95)(21,94)(22,93)(23,92)(24,91)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,60)(56,59)(57,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)], [(1,114),(2,113),(3,112),(4,111),(5,110),(6,109),(7,108),(8,107),(9,106),(10,105),(11,104),(12,103),(13,102),(14,101),(15,100),(16,99),(17,98),(18,97),(19,96),(20,95),(21,94),(22,93),(23,92),(24,91),(25,90),(26,89),(27,88),(28,87),(29,86),(30,85),(31,84),(32,83),(33,82),(34,81),(35,80),(36,79),(37,78),(38,77),(39,76),(40,75),(41,74),(42,73),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,63),(53,62),(54,61),(55,60),(56,59),(57,58)]])

D114 is a maximal subgroup of   D57⋊C4  C3⋊D76  C19⋊D12  D228  C577D4  C2×S3×D19
D114 is a maximal quotient of   Dic114  D228  C577D4

60 conjugacy classes

class 1 2A2B2C 3  6 19A···19I38A···38I57A···57R114A···114R
order12223619···1938···3857···57114···114
size115757222···22···22···22···2

60 irreducible representations

dim111222222
type+++++++++
imageC1C2C2S3D6D19D38D57D114
kernelD114D57C114C38C19C6C3C2C1
# reps12111991818

Matrix representation of D114 in GL3(𝔽229) generated by

22800
0175132
019757
,
100
086147
0160143
G:=sub<GL(3,GF(229))| [228,0,0,0,175,197,0,132,57],[1,0,0,0,86,160,0,147,143] >;

D114 in GAP, Magma, Sage, TeX

D_{114}
% in TeX

G:=Group("D114");
// GroupNames label

G:=SmallGroup(228,14);
// by ID

G=gap.SmallGroup(228,14);
# by ID

G:=PCGroup([4,-2,-2,-3,-19,98,3459]);
// Polycyclic

G:=Group<a,b|a^114=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D114 in TeX

׿
×
𝔽