Copied to
clipboard

G = C2×C120order 240 = 24·3·5

Abelian group of type [2,120]

direct product, abelian, monomial, 2-elementary

Aliases: C2×C120, SmallGroup(240,84)

Series: Derived Chief Lower central Upper central

C1 — C2×C120
C1C2C4C20C60C120 — C2×C120
C1 — C2×C120
C1 — C2×C120

Generators and relations for C2×C120
 G = < a,b | a2=b120=1, ab=ba >


Smallest permutation representation of C2×C120
Regular action on 240 points
Generators in S240
(1 180)(2 181)(3 182)(4 183)(5 184)(6 185)(7 186)(8 187)(9 188)(10 189)(11 190)(12 191)(13 192)(14 193)(15 194)(16 195)(17 196)(18 197)(19 198)(20 199)(21 200)(22 201)(23 202)(24 203)(25 204)(26 205)(27 206)(28 207)(29 208)(30 209)(31 210)(32 211)(33 212)(34 213)(35 214)(36 215)(37 216)(38 217)(39 218)(40 219)(41 220)(42 221)(43 222)(44 223)(45 224)(46 225)(47 226)(48 227)(49 228)(50 229)(51 230)(52 231)(53 232)(54 233)(55 234)(56 235)(57 236)(58 237)(59 238)(60 239)(61 240)(62 121)(63 122)(64 123)(65 124)(66 125)(67 126)(68 127)(69 128)(70 129)(71 130)(72 131)(73 132)(74 133)(75 134)(76 135)(77 136)(78 137)(79 138)(80 139)(81 140)(82 141)(83 142)(84 143)(85 144)(86 145)(87 146)(88 147)(89 148)(90 149)(91 150)(92 151)(93 152)(94 153)(95 154)(96 155)(97 156)(98 157)(99 158)(100 159)(101 160)(102 161)(103 162)(104 163)(105 164)(106 165)(107 166)(108 167)(109 168)(110 169)(111 170)(112 171)(113 172)(114 173)(115 174)(116 175)(117 176)(118 177)(119 178)(120 179)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)

G:=sub<Sym(240)| (1,180)(2,181)(3,182)(4,183)(5,184)(6,185)(7,186)(8,187)(9,188)(10,189)(11,190)(12,191)(13,192)(14,193)(15,194)(16,195)(17,196)(18,197)(19,198)(20,199)(21,200)(22,201)(23,202)(24,203)(25,204)(26,205)(27,206)(28,207)(29,208)(30,209)(31,210)(32,211)(33,212)(34,213)(35,214)(36,215)(37,216)(38,217)(39,218)(40,219)(41,220)(42,221)(43,222)(44,223)(45,224)(46,225)(47,226)(48,227)(49,228)(50,229)(51,230)(52,231)(53,232)(54,233)(55,234)(56,235)(57,236)(58,237)(59,238)(60,239)(61,240)(62,121)(63,122)(64,123)(65,124)(66,125)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131)(73,132)(74,133)(75,134)(76,135)(77,136)(78,137)(79,138)(80,139)(81,140)(82,141)(83,142)(84,143)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159)(101,160)(102,161)(103,162)(104,163)(105,164)(106,165)(107,166)(108,167)(109,168)(110,169)(111,170)(112,171)(113,172)(114,173)(115,174)(116,175)(117,176)(118,177)(119,178)(120,179), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)>;

G:=Group( (1,180)(2,181)(3,182)(4,183)(5,184)(6,185)(7,186)(8,187)(9,188)(10,189)(11,190)(12,191)(13,192)(14,193)(15,194)(16,195)(17,196)(18,197)(19,198)(20,199)(21,200)(22,201)(23,202)(24,203)(25,204)(26,205)(27,206)(28,207)(29,208)(30,209)(31,210)(32,211)(33,212)(34,213)(35,214)(36,215)(37,216)(38,217)(39,218)(40,219)(41,220)(42,221)(43,222)(44,223)(45,224)(46,225)(47,226)(48,227)(49,228)(50,229)(51,230)(52,231)(53,232)(54,233)(55,234)(56,235)(57,236)(58,237)(59,238)(60,239)(61,240)(62,121)(63,122)(64,123)(65,124)(66,125)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131)(73,132)(74,133)(75,134)(76,135)(77,136)(78,137)(79,138)(80,139)(81,140)(82,141)(83,142)(84,143)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159)(101,160)(102,161)(103,162)(104,163)(105,164)(106,165)(107,166)(108,167)(109,168)(110,169)(111,170)(112,171)(113,172)(114,173)(115,174)(116,175)(117,176)(118,177)(119,178)(120,179), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240) );

G=PermutationGroup([[(1,180),(2,181),(3,182),(4,183),(5,184),(6,185),(7,186),(8,187),(9,188),(10,189),(11,190),(12,191),(13,192),(14,193),(15,194),(16,195),(17,196),(18,197),(19,198),(20,199),(21,200),(22,201),(23,202),(24,203),(25,204),(26,205),(27,206),(28,207),(29,208),(30,209),(31,210),(32,211),(33,212),(34,213),(35,214),(36,215),(37,216),(38,217),(39,218),(40,219),(41,220),(42,221),(43,222),(44,223),(45,224),(46,225),(47,226),(48,227),(49,228),(50,229),(51,230),(52,231),(53,232),(54,233),(55,234),(56,235),(57,236),(58,237),(59,238),(60,239),(61,240),(62,121),(63,122),(64,123),(65,124),(66,125),(67,126),(68,127),(69,128),(70,129),(71,130),(72,131),(73,132),(74,133),(75,134),(76,135),(77,136),(78,137),(79,138),(80,139),(81,140),(82,141),(83,142),(84,143),(85,144),(86,145),(87,146),(88,147),(89,148),(90,149),(91,150),(92,151),(93,152),(94,153),(95,154),(96,155),(97,156),(98,157),(99,158),(100,159),(101,160),(102,161),(103,162),(104,163),(105,164),(106,165),(107,166),(108,167),(109,168),(110,169),(111,170),(112,171),(113,172),(114,173),(115,174),(116,175),(117,176),(118,177),(119,178),(120,179)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)]])

C2×C120 is a maximal subgroup of
C60.7C8  C60.26Q8  C12013C4  Dic308C4  C12010C4  C1209C4  C4.18D60  D303C8  D608C4  D60.6C4  C40.69D6

240 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D5A5B5C5D6A···6F8A···8H10A···10L12A···12H15A···15H20A···20P24A···24P30A···30X40A···40AF60A···60AF120A···120BL
order122233444455556···68···810···1012···1215···1520···2024···2430···3040···4060···60120···120
size111111111111111···11···11···11···11···11···11···11···11···11···11···1

240 irreducible representations

dim111111111111111111111111
type+++
imageC1C2C2C3C4C4C5C6C6C8C10C10C12C12C15C20C20C24C30C30C40C60C60C120
kernelC2×C120C120C2×C60C2×C40C60C2×C30C2×C24C40C2×C20C30C24C2×C12C20C2×C10C2×C8C12C2×C6C10C8C2×C4C6C4C22C2
# reps121222442884448881616832161664

Matrix representation of C2×C120 in GL2(𝔽241) generated by

2400
0240
,
90
077
G:=sub<GL(2,GF(241))| [240,0,0,240],[9,0,0,77] >;

C2×C120 in GAP, Magma, Sage, TeX

C_2\times C_{120}
% in TeX

G:=Group("C2xC120");
// GroupNames label

G:=SmallGroup(240,84);
// by ID

G=gap.SmallGroup(240,84);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,-2,360,88]);
// Polycyclic

G:=Group<a,b|a^2=b^120=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C2×C120 in TeX

׿
×
𝔽