metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊C4⋊6D7, C4⋊Dic7⋊7C2, D14⋊C4.5C2, (C2×C4).32D14, Dic7⋊C4⋊13C2, C7⋊3(C42⋊2C2), (C4×Dic7)⋊14C2, (C2×C28).7C22, C2.16(C4○D28), C14.14(C4○D4), (C2×C14).39C23, C2.7(Q8⋊2D7), C2.14(D4⋊2D7), (C22×D7).8C22, C22.53(C22×D7), (C2×Dic7).32C22, (C7×C4⋊C4)⋊9C2, SmallGroup(224,93)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4⋊C4⋊D7
G = < a,b,c,d | a4=b4=c7=d2=1, bab-1=a-1, ac=ca, dad=ab2, bc=cb, dbd=a2b, dcd=c-1 >
Subgroups: 246 in 60 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, C23, D7, C14, C42, C22⋊C4, C4⋊C4, C4⋊C4, Dic7, C28, D14, C2×C14, C42⋊2C2, C2×Dic7, C2×C28, C22×D7, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C7×C4⋊C4, C4⋊C4⋊D7
Quotients: C1, C2, C22, C23, D7, C4○D4, D14, C42⋊2C2, C22×D7, C4○D28, D4⋊2D7, Q8⋊2D7, C4⋊C4⋊D7
(1 55 13 48)(2 56 14 49)(3 50 8 43)(4 51 9 44)(5 52 10 45)(6 53 11 46)(7 54 12 47)(15 36 22 29)(16 37 23 30)(17 38 24 31)(18 39 25 32)(19 40 26 33)(20 41 27 34)(21 42 28 35)(57 99 64 106)(58 100 65 107)(59 101 66 108)(60 102 67 109)(61 103 68 110)(62 104 69 111)(63 105 70 112)(71 85 78 92)(72 86 79 93)(73 87 80 94)(74 88 81 95)(75 89 82 96)(76 90 83 97)(77 91 84 98)
(1 76 20 62)(2 77 21 63)(3 71 15 57)(4 72 16 58)(5 73 17 59)(6 74 18 60)(7 75 19 61)(8 78 22 64)(9 79 23 65)(10 80 24 66)(11 81 25 67)(12 82 26 68)(13 83 27 69)(14 84 28 70)(29 99 43 85)(30 100 44 86)(31 101 45 87)(32 102 46 88)(33 103 47 89)(34 104 48 90)(35 105 49 91)(36 106 50 92)(37 107 51 93)(38 108 52 94)(39 109 53 95)(40 110 54 96)(41 111 55 97)(42 112 56 98)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 45)(30 44)(31 43)(32 49)(33 48)(34 47)(35 46)(36 52)(37 51)(38 50)(39 56)(40 55)(41 54)(42 53)(57 66)(58 65)(59 64)(60 70)(61 69)(62 68)(63 67)(71 80)(72 79)(73 78)(74 84)(75 83)(76 82)(77 81)(85 108)(86 107)(87 106)(88 112)(89 111)(90 110)(91 109)(92 101)(93 100)(94 99)(95 105)(96 104)(97 103)(98 102)
G:=sub<Sym(112)| (1,55,13,48)(2,56,14,49)(3,50,8,43)(4,51,9,44)(5,52,10,45)(6,53,11,46)(7,54,12,47)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35)(57,99,64,106)(58,100,65,107)(59,101,66,108)(60,102,67,109)(61,103,68,110)(62,104,69,111)(63,105,70,112)(71,85,78,92)(72,86,79,93)(73,87,80,94)(74,88,81,95)(75,89,82,96)(76,90,83,97)(77,91,84,98), (1,76,20,62)(2,77,21,63)(3,71,15,57)(4,72,16,58)(5,73,17,59)(6,74,18,60)(7,75,19,61)(8,78,22,64)(9,79,23,65)(10,80,24,66)(11,81,25,67)(12,82,26,68)(13,83,27,69)(14,84,28,70)(29,99,43,85)(30,100,44,86)(31,101,45,87)(32,102,46,88)(33,103,47,89)(34,104,48,90)(35,105,49,91)(36,106,50,92)(37,107,51,93)(38,108,52,94)(39,109,53,95)(40,110,54,96)(41,111,55,97)(42,112,56,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53)(57,66)(58,65)(59,64)(60,70)(61,69)(62,68)(63,67)(71,80)(72,79)(73,78)(74,84)(75,83)(76,82)(77,81)(85,108)(86,107)(87,106)(88,112)(89,111)(90,110)(91,109)(92,101)(93,100)(94,99)(95,105)(96,104)(97,103)(98,102)>;
G:=Group( (1,55,13,48)(2,56,14,49)(3,50,8,43)(4,51,9,44)(5,52,10,45)(6,53,11,46)(7,54,12,47)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35)(57,99,64,106)(58,100,65,107)(59,101,66,108)(60,102,67,109)(61,103,68,110)(62,104,69,111)(63,105,70,112)(71,85,78,92)(72,86,79,93)(73,87,80,94)(74,88,81,95)(75,89,82,96)(76,90,83,97)(77,91,84,98), (1,76,20,62)(2,77,21,63)(3,71,15,57)(4,72,16,58)(5,73,17,59)(6,74,18,60)(7,75,19,61)(8,78,22,64)(9,79,23,65)(10,80,24,66)(11,81,25,67)(12,82,26,68)(13,83,27,69)(14,84,28,70)(29,99,43,85)(30,100,44,86)(31,101,45,87)(32,102,46,88)(33,103,47,89)(34,104,48,90)(35,105,49,91)(36,106,50,92)(37,107,51,93)(38,108,52,94)(39,109,53,95)(40,110,54,96)(41,111,55,97)(42,112,56,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53)(57,66)(58,65)(59,64)(60,70)(61,69)(62,68)(63,67)(71,80)(72,79)(73,78)(74,84)(75,83)(76,82)(77,81)(85,108)(86,107)(87,106)(88,112)(89,111)(90,110)(91,109)(92,101)(93,100)(94,99)(95,105)(96,104)(97,103)(98,102) );
G=PermutationGroup([[(1,55,13,48),(2,56,14,49),(3,50,8,43),(4,51,9,44),(5,52,10,45),(6,53,11,46),(7,54,12,47),(15,36,22,29),(16,37,23,30),(17,38,24,31),(18,39,25,32),(19,40,26,33),(20,41,27,34),(21,42,28,35),(57,99,64,106),(58,100,65,107),(59,101,66,108),(60,102,67,109),(61,103,68,110),(62,104,69,111),(63,105,70,112),(71,85,78,92),(72,86,79,93),(73,87,80,94),(74,88,81,95),(75,89,82,96),(76,90,83,97),(77,91,84,98)], [(1,76,20,62),(2,77,21,63),(3,71,15,57),(4,72,16,58),(5,73,17,59),(6,74,18,60),(7,75,19,61),(8,78,22,64),(9,79,23,65),(10,80,24,66),(11,81,25,67),(12,82,26,68),(13,83,27,69),(14,84,28,70),(29,99,43,85),(30,100,44,86),(31,101,45,87),(32,102,46,88),(33,103,47,89),(34,104,48,90),(35,105,49,91),(36,106,50,92),(37,107,51,93),(38,108,52,94),(39,109,53,95),(40,110,54,96),(41,111,55,97),(42,112,56,98)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,45),(30,44),(31,43),(32,49),(33,48),(34,47),(35,46),(36,52),(37,51),(38,50),(39,56),(40,55),(41,54),(42,53),(57,66),(58,65),(59,64),(60,70),(61,69),(62,68),(63,67),(71,80),(72,79),(73,78),(74,84),(75,83),(76,82),(77,81),(85,108),(86,107),(87,106),(88,112),(89,111),(90,110),(91,109),(92,101),(93,100),(94,99),(95,105),(96,104),(97,103),(98,102)]])
C4⋊C4⋊D7 is a maximal subgroup of
C14.52- 1+4 C14.112+ 1+4 C14.62- 1+4 C42⋊10D14 C42.93D14 C42.96D14 C42.99D14 C42.102D14 C42⋊16D14 C42⋊17D14 C42.119D14 C42.122D14 C42.131D14 C42.134D14 C42.135D14 C14.342+ 1+4 C14.422+ 1+4 C14.462+ 1+4 C14.482+ 1+4 C22⋊Q8⋊25D7 C14.532+ 1+4 C14.202- 1+4 C14.222- 1+4 C14.232- 1+4 C14.772- 1+4 C14.242- 1+4 C14.562+ 1+4 C14.572+ 1+4 C14.582+ 1+4 C4⋊C4.197D14 C14.612+ 1+4 C14.1222+ 1+4 C14.642+ 1+4 C14.842- 1+4 C14.852- 1+4 C14.682+ 1+4 C42.237D14 C42.150D14 C42.151D14 C42.152D14 C42.153D14 C42.154D14 C42.155D14 C42.157D14 C42.160D14 D7×C42⋊2C2 C42⋊23D14 C42.161D14 C42.163D14 C42.164D14 C42.165D14 C42.176D14 C42.177D14 C42.178D14 C42.180D14
C4⋊C4⋊D7 is a maximal quotient of
C7⋊(C42⋊5C4) C4⋊Dic7⋊8C4 (C2×C4).Dic14 (C22×C4).D14 D14⋊C4⋊5C4 C2.(C4×D28) (C2×C4).21D28 (C22×D7).9D4 C22.23(Q8×D7) C4⋊C4⋊5Dic7 (C2×C28).288D4 (C2×C28).55D4 D14⋊C4⋊7C4 (C2×C28).290D4 (C2×C4).45D28
44 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 7A | 7B | 7C | 14A | ··· | 14I | 28A | ··· | 28R |
| order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
| size | 1 | 1 | 1 | 1 | 28 | 2 | 2 | 4 | 4 | 14 | 14 | 14 | 14 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | - | + | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | D7 | C4○D4 | D14 | C4○D28 | D4⋊2D7 | Q8⋊2D7 |
| kernel | C4⋊C4⋊D7 | C4×Dic7 | Dic7⋊C4 | C4⋊Dic7 | D14⋊C4 | C7×C4⋊C4 | C4⋊C4 | C14 | C2×C4 | C2 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 6 | 9 | 12 | 3 | 3 |
Matrix representation of C4⋊C4⋊D7 ►in GL4(𝔽29) generated by
| 20 | 14 | 0 | 0 |
| 15 | 9 | 0 | 0 |
| 0 | 0 | 17 | 0 |
| 0 | 0 | 12 | 12 |
| 12 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 |
| 0 | 0 | 28 | 27 |
| 0 | 0 | 0 | 1 |
| 7 | 1 | 0 | 0 |
| 28 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 28 | 28 |
G:=sub<GL(4,GF(29))| [20,15,0,0,14,9,0,0,0,0,17,12,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,28,0,0,0,27,1],[7,28,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,28,0,0,0,28] >;
C4⋊C4⋊D7 in GAP, Magma, Sage, TeX
C_4\rtimes C_4\rtimes D_7
% in TeX
G:=Group("C4:C4:D7"); // GroupNames label
G:=SmallGroup(224,93);
// by ID
G=gap.SmallGroup(224,93);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,55,218,188,86,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^7=d^2=1,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations