metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D109, C109⋊C2, sometimes denoted D218 or Dih109 or Dih218, SmallGroup(218,1)
Series: Derived ►Chief ►Lower central ►Upper central
C109 — D109 |
Generators and relations for D109
G = < a,b | a109=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109)
(1 109)(2 108)(3 107)(4 106)(5 105)(6 104)(7 103)(8 102)(9 101)(10 100)(11 99)(12 98)(13 97)(14 96)(15 95)(16 94)(17 93)(18 92)(19 91)(20 90)(21 89)(22 88)(23 87)(24 86)(25 85)(26 84)(27 83)(28 82)(29 81)(30 80)(31 79)(32 78)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)(40 70)(41 69)(42 68)(43 67)(44 66)(45 65)(46 64)(47 63)(48 62)(49 61)(50 60)(51 59)(52 58)(53 57)(54 56)
G:=sub<Sym(109)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109), (1,109)(2,108)(3,107)(4,106)(5,105)(6,104)(7,103)(8,102)(9,101)(10,100)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,90)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109), (1,109)(2,108)(3,107)(4,106)(5,105)(6,104)(7,103)(8,102)(9,101)(10,100)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,90)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109)], [(1,109),(2,108),(3,107),(4,106),(5,105),(6,104),(7,103),(8,102),(9,101),(10,100),(11,99),(12,98),(13,97),(14,96),(15,95),(16,94),(17,93),(18,92),(19,91),(20,90),(21,89),(22,88),(23,87),(24,86),(25,85),(26,84),(27,83),(28,82),(29,81),(30,80),(31,79),(32,78),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71),(40,70),(41,69),(42,68),(43,67),(44,66),(45,65),(46,64),(47,63),(48,62),(49,61),(50,60),(51,59),(52,58),(53,57),(54,56)]])
D109 is a maximal subgroup of
C109⋊C4
D109 is a maximal quotient of Dic109
56 conjugacy classes
class | 1 | 2 | 109A | ··· | 109BB |
order | 1 | 2 | 109 | ··· | 109 |
size | 1 | 109 | 2 | ··· | 2 |
56 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D109 |
kernel | D109 | C109 | C1 |
# reps | 1 | 1 | 54 |
Matrix representation of D109 ►in GL2(𝔽1091) generated by
300 | 1090 |
1 | 0 |
300 | 1090 |
537 | 791 |
G:=sub<GL(2,GF(1091))| [300,1,1090,0],[300,537,1090,791] >;
D109 in GAP, Magma, Sage, TeX
D_{109}
% in TeX
G:=Group("D109");
// GroupNames label
G:=SmallGroup(218,1);
// by ID
G=gap.SmallGroup(218,1);
# by ID
G:=PCGroup([2,-2,-109,865]);
// Polycyclic
G:=Group<a,b|a^109=b^2=1,b*a*b=a^-1>;
// generators/relations
Export