metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D109, C109:C2, sometimes denoted D218 or Dih109 or Dih218, SmallGroup(218,1)
Series: Derived ►Chief ►Lower central ►Upper central
C109 — D109 |
Generators and relations for D109
G = < a,b | a109=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109)
(1 109)(2 108)(3 107)(4 106)(5 105)(6 104)(7 103)(8 102)(9 101)(10 100)(11 99)(12 98)(13 97)(14 96)(15 95)(16 94)(17 93)(18 92)(19 91)(20 90)(21 89)(22 88)(23 87)(24 86)(25 85)(26 84)(27 83)(28 82)(29 81)(30 80)(31 79)(32 78)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)(40 70)(41 69)(42 68)(43 67)(44 66)(45 65)(46 64)(47 63)(48 62)(49 61)(50 60)(51 59)(52 58)(53 57)(54 56)
G:=sub<Sym(109)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109), (1,109)(2,108)(3,107)(4,106)(5,105)(6,104)(7,103)(8,102)(9,101)(10,100)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,90)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109), (1,109)(2,108)(3,107)(4,106)(5,105)(6,104)(7,103)(8,102)(9,101)(10,100)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,90)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109)], [(1,109),(2,108),(3,107),(4,106),(5,105),(6,104),(7,103),(8,102),(9,101),(10,100),(11,99),(12,98),(13,97),(14,96),(15,95),(16,94),(17,93),(18,92),(19,91),(20,90),(21,89),(22,88),(23,87),(24,86),(25,85),(26,84),(27,83),(28,82),(29,81),(30,80),(31,79),(32,78),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71),(40,70),(41,69),(42,68),(43,67),(44,66),(45,65),(46,64),(47,63),(48,62),(49,61),(50,60),(51,59),(52,58),(53,57),(54,56)]])
D109 is a maximal subgroup of
C109:C4
D109 is a maximal quotient of Dic109
56 conjugacy classes
class | 1 | 2 | 109A | ··· | 109BB |
order | 1 | 2 | 109 | ··· | 109 |
size | 1 | 109 | 2 | ··· | 2 |
56 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D109 |
kernel | D109 | C109 | C1 |
# reps | 1 | 1 | 54 |
Matrix representation of D109 ►in GL2(F1091) generated by
300 | 1090 |
1 | 0 |
300 | 1090 |
537 | 791 |
G:=sub<GL(2,GF(1091))| [300,1,1090,0],[300,537,1090,791] >;
D109 in GAP, Magma, Sage, TeX
D_{109}
% in TeX
G:=Group("D109");
// GroupNames label
G:=SmallGroup(218,1);
// by ID
G=gap.SmallGroup(218,1);
# by ID
G:=PCGroup([2,-2,-109,865]);
// Polycyclic
G:=Group<a,b|a^109=b^2=1,b*a*b=a^-1>;
// generators/relations
Export