Copied to
clipboard

G = C109⋊C4order 436 = 22·109

The semidirect product of C109 and C4 acting faithfully

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C109⋊C4, D109.C2, SmallGroup(436,3)

Series: Derived Chief Lower central Upper central

C1C109 — C109⋊C4
C1C109D109 — C109⋊C4
C109 — C109⋊C4
C1

Generators and relations for C109⋊C4
 G = < a,b | a109=b4=1, bab-1=a76 >

109C2
109C4

Smallest permutation representation of C109⋊C4
On 109 points: primitive
Generators in S109
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109)
(2 34 109 77)(3 67 108 44)(4 100 107 11)(5 24 106 87)(6 57 105 54)(7 90 104 21)(8 14 103 97)(9 47 102 64)(10 80 101 31)(12 37 99 74)(13 70 98 41)(15 27 96 84)(16 60 95 51)(17 93 94 18)(19 50 92 61)(20 83 91 28)(22 40 89 71)(23 73 88 38)(25 30 86 81)(26 63 85 48)(29 53 82 58)(32 43 79 68)(33 76 78 35)(36 66 75 45)(39 56 72 55)(42 46 69 65)(49 59 62 52)

G:=sub<Sym(109)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109), (2,34,109,77)(3,67,108,44)(4,100,107,11)(5,24,106,87)(6,57,105,54)(7,90,104,21)(8,14,103,97)(9,47,102,64)(10,80,101,31)(12,37,99,74)(13,70,98,41)(15,27,96,84)(16,60,95,51)(17,93,94,18)(19,50,92,61)(20,83,91,28)(22,40,89,71)(23,73,88,38)(25,30,86,81)(26,63,85,48)(29,53,82,58)(32,43,79,68)(33,76,78,35)(36,66,75,45)(39,56,72,55)(42,46,69,65)(49,59,62,52)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109), (2,34,109,77)(3,67,108,44)(4,100,107,11)(5,24,106,87)(6,57,105,54)(7,90,104,21)(8,14,103,97)(9,47,102,64)(10,80,101,31)(12,37,99,74)(13,70,98,41)(15,27,96,84)(16,60,95,51)(17,93,94,18)(19,50,92,61)(20,83,91,28)(22,40,89,71)(23,73,88,38)(25,30,86,81)(26,63,85,48)(29,53,82,58)(32,43,79,68)(33,76,78,35)(36,66,75,45)(39,56,72,55)(42,46,69,65)(49,59,62,52) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109)], [(2,34,109,77),(3,67,108,44),(4,100,107,11),(5,24,106,87),(6,57,105,54),(7,90,104,21),(8,14,103,97),(9,47,102,64),(10,80,101,31),(12,37,99,74),(13,70,98,41),(15,27,96,84),(16,60,95,51),(17,93,94,18),(19,50,92,61),(20,83,91,28),(22,40,89,71),(23,73,88,38),(25,30,86,81),(26,63,85,48),(29,53,82,58),(32,43,79,68),(33,76,78,35),(36,66,75,45),(39,56,72,55),(42,46,69,65),(49,59,62,52)]])

31 conjugacy classes

class 1  2 4A4B109A···109AA
order1244109···109
size11091091094···4

31 irreducible representations

dim1114
type+++
imageC1C2C4C109⋊C4
kernelC109⋊C4D109C109C1
# reps11227

Matrix representation of C109⋊C4 in GL4(𝔽2617) generated by

1387100
1775010
2275001
126733405365
,
124017367672008
63314601511064
2199162423881699
81825152229146
G:=sub<GL(4,GF(2617))| [1387,1775,2275,1267,1,0,0,33,0,1,0,405,0,0,1,365],[1240,633,2199,818,1736,1460,1624,2515,767,151,2388,2229,2008,1064,1699,146] >;

C109⋊C4 in GAP, Magma, Sage, TeX

C_{109}\rtimes C_4
% in TeX

G:=Group("C109:C4");
// GroupNames label

G:=SmallGroup(436,3);
// by ID

G=gap.SmallGroup(436,3);
# by ID

G:=PCGroup([3,-2,-2,-109,6,1190,1949]);
// Polycyclic

G:=Group<a,b|a^109=b^4=1,b*a*b^-1=a^76>;
// generators/relations

Export

Subgroup lattice of C109⋊C4 in TeX

׿
×
𝔽