direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: S3×C37, C3⋊C74, C111⋊3C2, SmallGroup(222,3)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C37 |
Generators and relations for S3×C37
G = < a,b,c | a37=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)
(1 83 54)(2 84 55)(3 85 56)(4 86 57)(5 87 58)(6 88 59)(7 89 60)(8 90 61)(9 91 62)(10 92 63)(11 93 64)(12 94 65)(13 95 66)(14 96 67)(15 97 68)(16 98 69)(17 99 70)(18 100 71)(19 101 72)(20 102 73)(21 103 74)(22 104 38)(23 105 39)(24 106 40)(25 107 41)(26 108 42)(27 109 43)(28 110 44)(29 111 45)(30 75 46)(31 76 47)(32 77 48)(33 78 49)(34 79 50)(35 80 51)(36 81 52)(37 82 53)
(38 104)(39 105)(40 106)(41 107)(42 108)(43 109)(44 110)(45 111)(46 75)(47 76)(48 77)(49 78)(50 79)(51 80)(52 81)(53 82)(54 83)(55 84)(56 85)(57 86)(58 87)(59 88)(60 89)(61 90)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 97)(69 98)(70 99)(71 100)(72 101)(73 102)(74 103)
G:=sub<Sym(111)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,83,54)(2,84,55)(3,85,56)(4,86,57)(5,87,58)(6,88,59)(7,89,60)(8,90,61)(9,91,62)(10,92,63)(11,93,64)(12,94,65)(13,95,66)(14,96,67)(15,97,68)(16,98,69)(17,99,70)(18,100,71)(19,101,72)(20,102,73)(21,103,74)(22,104,38)(23,105,39)(24,106,40)(25,107,41)(26,108,42)(27,109,43)(28,110,44)(29,111,45)(30,75,46)(31,76,47)(32,77,48)(33,78,49)(34,79,50)(35,80,51)(36,81,52)(37,82,53), (38,104)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,81)(53,82)(54,83)(55,84)(56,85)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,83,54)(2,84,55)(3,85,56)(4,86,57)(5,87,58)(6,88,59)(7,89,60)(8,90,61)(9,91,62)(10,92,63)(11,93,64)(12,94,65)(13,95,66)(14,96,67)(15,97,68)(16,98,69)(17,99,70)(18,100,71)(19,101,72)(20,102,73)(21,103,74)(22,104,38)(23,105,39)(24,106,40)(25,107,41)(26,108,42)(27,109,43)(28,110,44)(29,111,45)(30,75,46)(31,76,47)(32,77,48)(33,78,49)(34,79,50)(35,80,51)(36,81,52)(37,82,53), (38,104)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,81)(53,82)(54,83)(55,84)(56,85)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)], [(1,83,54),(2,84,55),(3,85,56),(4,86,57),(5,87,58),(6,88,59),(7,89,60),(8,90,61),(9,91,62),(10,92,63),(11,93,64),(12,94,65),(13,95,66),(14,96,67),(15,97,68),(16,98,69),(17,99,70),(18,100,71),(19,101,72),(20,102,73),(21,103,74),(22,104,38),(23,105,39),(24,106,40),(25,107,41),(26,108,42),(27,109,43),(28,110,44),(29,111,45),(30,75,46),(31,76,47),(32,77,48),(33,78,49),(34,79,50),(35,80,51),(36,81,52),(37,82,53)], [(38,104),(39,105),(40,106),(41,107),(42,108),(43,109),(44,110),(45,111),(46,75),(47,76),(48,77),(49,78),(50,79),(51,80),(52,81),(53,82),(54,83),(55,84),(56,85),(57,86),(58,87),(59,88),(60,89),(61,90),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,97),(69,98),(70,99),(71,100),(72,101),(73,102),(74,103)]])
111 conjugacy classes
class | 1 | 2 | 3 | 37A | ··· | 37AJ | 74A | ··· | 74AJ | 111A | ··· | 111AJ |
order | 1 | 2 | 3 | 37 | ··· | 37 | 74 | ··· | 74 | 111 | ··· | 111 |
size | 1 | 3 | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | ··· | 2 |
111 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | |||
image | C1 | C2 | C37 | C74 | S3 | S3×C37 |
kernel | S3×C37 | C111 | S3 | C3 | C37 | C1 |
# reps | 1 | 1 | 36 | 36 | 1 | 36 |
Matrix representation of S3×C37 ►in GL2(𝔽223) generated by
2 | 0 |
0 | 2 |
222 | 222 |
1 | 0 |
1 | 0 |
222 | 222 |
G:=sub<GL(2,GF(223))| [2,0,0,2],[222,1,222,0],[1,222,0,222] >;
S3×C37 in GAP, Magma, Sage, TeX
S_3\times C_{37}
% in TeX
G:=Group("S3xC37");
// GroupNames label
G:=SmallGroup(222,3);
// by ID
G=gap.SmallGroup(222,3);
# by ID
G:=PCGroup([3,-2,-37,-3,1334]);
// Polycyclic
G:=Group<a,b,c|a^37=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export