Extensions 1→N→G→Q→1 with N=C6×D5 and Q=C4

Direct product G=N×Q with N=C6×D5 and Q=C4
dρLabelID
D5×C2×C12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C6×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C6×D5)⋊1C4 = D10⋊Dic3φ: C4/C2C2 ⊆ Out C6×D5120(C6xD5):1C4240,26
(C6×D5)⋊2C4 = C2×D5×Dic3φ: C4/C2C2 ⊆ Out C6×D5120(C6xD5):2C4240,139
(C6×D5)⋊3C4 = C3×D10⋊C4φ: C4/C2C2 ⊆ Out C6×D5120(C6xD5):3C4240,43
(C6×D5)⋊4C4 = D10.D6φ: C4/C2C2 ⊆ Out C6×D5604(C6xD5):4C4240,124
(C6×D5)⋊5C4 = C22×C3⋊F5φ: C4/C2C2 ⊆ Out C6×D560(C6xD5):5C4240,201
(C6×D5)⋊6C4 = C3×C22⋊F5φ: C4/C2C2 ⊆ Out C6×D5604(C6xD5):6C4240,117
(C6×D5)⋊7C4 = C2×C6×F5φ: C4/C2C2 ⊆ Out C6×D560(C6xD5):7C4240,200

Non-split extensions G=N.Q with N=C6×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C6×D5).1C4 = D5×C3⋊C8φ: C4/C2C2 ⊆ Out C6×D51204(C6xD5).1C4240,7
(C6×D5).2C4 = C20.32D6φ: C4/C2C2 ⊆ Out C6×D51204(C6xD5).2C4240,10
(C6×D5).3C4 = C3×C8⋊D5φ: C4/C2C2 ⊆ Out C6×D51202(C6xD5).3C4240,34
(C6×D5).4C4 = C60.C4φ: C4/C2C2 ⊆ Out C6×D51204(C6xD5).4C4240,118
(C6×D5).5C4 = C12.F5φ: C4/C2C2 ⊆ Out C6×D51204(C6xD5).5C4240,119
(C6×D5).6C4 = C3×D5⋊C8φ: C4/C2C2 ⊆ Out C6×D51204(C6xD5).6C4240,111
(C6×D5).7C4 = C3×C4.F5φ: C4/C2C2 ⊆ Out C6×D51204(C6xD5).7C4240,112
(C6×D5).8C4 = D5×C24φ: trivial image1202(C6xD5).8C4240,33

׿
×
𝔽