Extensions 1→N→G→Q→1 with N=C3⋊D20 and Q=C2

Direct product G=N×Q with N=C3⋊D20 and Q=C2
dρLabelID
C2×C3⋊D20120C2xC3:D20240,146

Semidirect products G=N:Q with N=C3⋊D20 and Q=C2
extensionφ:Q→Out NdρLabelID
C3⋊D201C2 = D20⋊S3φ: C2/C1C2 ⊆ Out C3⋊D201204C3:D20:1C2240,127
C3⋊D202C2 = C12.28D10φ: C2/C1C2 ⊆ Out C3⋊D201204+C3:D20:2C2240,134
C3⋊D203C2 = S3×D20φ: C2/C1C2 ⊆ Out C3⋊D20604+C3:D20:3C2240,137
C3⋊D204C2 = Dic5.D6φ: C2/C1C2 ⊆ Out C3⋊D201204C3:D20:4C2240,140
C3⋊D205C2 = D5×C3⋊D4φ: C2/C1C2 ⊆ Out C3⋊D20604C3:D20:5C2240,149
C3⋊D206C2 = D10⋊D6φ: C2/C1C2 ⊆ Out C3⋊D20604+C3:D20:6C2240,151
C3⋊D207C2 = D6.D10φ: trivial image1204C3:D20:7C2240,132


׿
×
𝔽