Extensions 1→N→G→Q→1 with N=C15 and Q=C4oD4

Direct product G=NxQ with N=C15 and Q=C4oD4
dρLabelID
C15xC4oD41202C15xC4oD4240,188

Semidirect products G=N:Q with N=C15 and Q=C4oD4
extensionφ:Q→Aut NdρLabelID
C15:1(C4oD4) = D20:5S3φ: C4oD4/C4C22 ⊆ Aut C151204-C15:1(C4oD4)240,126
C15:2(C4oD4) = D20:S3φ: C4oD4/C4C22 ⊆ Aut C151204C15:2(C4oD4)240,127
C15:3(C4oD4) = D12:D5φ: C4oD4/C4C22 ⊆ Aut C151204C15:3(C4oD4)240,129
C15:4(C4oD4) = D60:C2φ: C4oD4/C4C22 ⊆ Aut C151204+C15:4(C4oD4)240,130
C15:5(C4oD4) = D6.D10φ: C4oD4/C4C22 ⊆ Aut C151204C15:5(C4oD4)240,132
C15:6(C4oD4) = D12:5D5φ: C4oD4/C4C22 ⊆ Aut C151204-C15:6(C4oD4)240,133
C15:7(C4oD4) = C12.28D10φ: C4oD4/C4C22 ⊆ Aut C151204+C15:7(C4oD4)240,134
C15:8(C4oD4) = Dic5.D6φ: C4oD4/C22C22 ⊆ Aut C151204C15:8(C4oD4)240,140
C15:9(C4oD4) = C30.C23φ: C4oD4/C22C22 ⊆ Aut C151204-C15:9(C4oD4)240,141
C15:10(C4oD4) = Dic3.D10φ: C4oD4/C22C22 ⊆ Aut C151204C15:10(C4oD4)240,143
C15:11(C4oD4) = D60:11C2φ: C4oD4/C2xC4C2 ⊆ Aut C151202C15:11(C4oD4)240,178
C15:12(C4oD4) = C3xC4oD20φ: C4oD4/C2xC4C2 ⊆ Aut C151202C15:12(C4oD4)240,158
C15:13(C4oD4) = C5xC4oD12φ: C4oD4/C2xC4C2 ⊆ Aut C151202C15:13(C4oD4)240,168
C15:14(C4oD4) = D4:2D15φ: C4oD4/D4C2 ⊆ Aut C151204-C15:14(C4oD4)240,180
C15:15(C4oD4) = C3xD4:2D5φ: C4oD4/D4C2 ⊆ Aut C151204C15:15(C4oD4)240,160
C15:16(C4oD4) = C5xD4:2S3φ: C4oD4/D4C2 ⊆ Aut C151204C15:16(C4oD4)240,170
C15:17(C4oD4) = Q8:3D15φ: C4oD4/Q8C2 ⊆ Aut C151204+C15:17(C4oD4)240,182
C15:18(C4oD4) = C3xQ8:2D5φ: C4oD4/Q8C2 ⊆ Aut C151204C15:18(C4oD4)240,162
C15:19(C4oD4) = C5xQ8:3S3φ: C4oD4/Q8C2 ⊆ Aut C151204C15:19(C4oD4)240,172


׿
x
:
Z
F
o
wr
Q
<