Extensions 1→N→G→Q→1 with N=C2×Dic15 and Q=C2

Direct product G=N×Q with N=C2×Dic15 and Q=C2
dρLabelID
C22×Dic15240C2^2xDic15240,183

Semidirect products G=N:Q with N=C2×Dic15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic15)⋊1C2 = D303C4φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):1C2240,75
(C2×Dic15)⋊2C2 = C30.38D4φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):2C2240,80
(C2×Dic15)⋊3C2 = D42D15φ: C2/C1C2 ⊆ Out C2×Dic151204-(C2xDic15):3C2240,180
(C2×Dic15)⋊4C2 = C2×C157D4φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):4C2240,184
(C2×Dic15)⋊5C2 = D10⋊Dic3φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):5C2240,26
(C2×Dic15)⋊6C2 = D6⋊Dic5φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):6C2240,27
(C2×Dic15)⋊7C2 = C2×D5×Dic3φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):7C2240,139
(C2×Dic15)⋊8C2 = C30.C23φ: C2/C1C2 ⊆ Out C2×Dic151204-(C2xDic15):8C2240,141
(C2×Dic15)⋊9C2 = C2×S3×Dic5φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):9C2240,142
(C2×Dic15)⋊10C2 = C2×C15⋊D4φ: C2/C1C2 ⊆ Out C2×Dic15120(C2xDic15):10C2240,145
(C2×Dic15)⋊11C2 = C2×C4×D15φ: trivial image120(C2xDic15):11C2240,176

Non-split extensions G=N.Q with N=C2×Dic15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic15).1C2 = C30.4Q8φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).1C2240,73
(C2×Dic15).2C2 = C605C4φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).2C2240,74
(C2×Dic15).3C2 = C2×Dic30φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).3C2240,175
(C2×Dic15).4C2 = Dic3×Dic5φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).4C2240,25
(C2×Dic15).5C2 = C30.Q8φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).5C2240,29
(C2×Dic15).6C2 = Dic155C4φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).6C2240,30
(C2×Dic15).7C2 = C6.Dic10φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).7C2240,31
(C2×Dic15).8C2 = C2×C15⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic15240(C2xDic15).8C2240,148
(C2×Dic15).9C2 = C4×Dic15φ: trivial image240(C2xDic15).9C2240,72

׿
×
𝔽