Copied to
clipboard

G = C2xC15:7D4order 240 = 24·3·5

Direct product of C2 and C15:7D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xC15:7D4, C30:7D4, C23:2D15, C22:3D30, D30:7C22, C30.37C23, Dic15:4C22, (C2xC6):8D10, C15:16(C2xD4), (C2xC10):11D6, C6:3(C5:D4), (C22xC6):2D5, C10:3(C3:D4), (C2xC30):9C22, (C22xC10):4S3, (C22xC30):2C2, (C2xDic15):4C2, (C22xD15):3C2, C6.37(C22xD5), C10.37(C22xS3), C2.10(C22xD15), C5:4(C2xC3:D4), C3:4(C2xC5:D4), SmallGroup(240,184)

Series: Derived Chief Lower central Upper central

C1C30 — C2xC15:7D4
C1C5C15C30D30C22xD15 — C2xC15:7D4
C15C30 — C2xC15:7D4
C1C22C23

Generators and relations for C2xC15:7D4
 G = < a,b,c,d | a2=b15=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 520 in 108 conjugacy classes, 43 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2xC4, D4, C23, C23, D5, C10, C10, C10, Dic3, D6, C2xC6, C2xC6, C2xC6, C15, C2xD4, Dic5, D10, C2xC10, C2xC10, C2xC10, C2xDic3, C3:D4, C22xS3, C22xC6, D15, C30, C30, C30, C2xDic5, C5:D4, C22xD5, C22xC10, C2xC3:D4, Dic15, D30, D30, C2xC30, C2xC30, C2xC30, C2xC5:D4, C2xDic15, C15:7D4, C22xD15, C22xC30, C2xC15:7D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2xD4, D10, C3:D4, C22xS3, D15, C5:D4, C22xD5, C2xC3:D4, D30, C2xC5:D4, C15:7D4, C22xD15, C2xC15:7D4

Smallest permutation representation of C2xC15:7D4
On 120 points
Generators in S120
(1 74)(2 75)(3 61)(4 62)(5 63)(6 64)(7 65)(8 66)(9 67)(10 68)(11 69)(12 70)(13 71)(14 72)(15 73)(16 81)(17 82)(18 83)(19 84)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 76)(27 77)(28 78)(29 79)(30 80)(31 100)(32 101)(33 102)(34 103)(35 104)(36 105)(37 91)(38 92)(39 93)(40 94)(41 95)(42 96)(43 97)(44 98)(45 99)(46 107)(47 108)(48 109)(49 110)(50 111)(51 112)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 106)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 40 29 59)(2 39 30 58)(3 38 16 57)(4 37 17 56)(5 36 18 55)(6 35 19 54)(7 34 20 53)(8 33 21 52)(9 32 22 51)(10 31 23 50)(11 45 24 49)(12 44 25 48)(13 43 26 47)(14 42 27 46)(15 41 28 60)(61 92 81 118)(62 91 82 117)(63 105 83 116)(64 104 84 115)(65 103 85 114)(66 102 86 113)(67 101 87 112)(68 100 88 111)(69 99 89 110)(70 98 90 109)(71 97 76 108)(72 96 77 107)(73 95 78 106)(74 94 79 120)(75 93 80 119)
(1 74)(2 73)(3 72)(4 71)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 63)(13 62)(14 61)(15 75)(16 77)(17 76)(18 90)(19 89)(20 88)(21 87)(22 86)(23 85)(24 84)(25 83)(26 82)(27 81)(28 80)(29 79)(30 78)(31 114)(32 113)(33 112)(34 111)(35 110)(36 109)(37 108)(38 107)(39 106)(40 120)(41 119)(42 118)(43 117)(44 116)(45 115)(46 92)(47 91)(48 105)(49 104)(50 103)(51 102)(52 101)(53 100)(54 99)(55 98)(56 97)(57 96)(58 95)(59 94)(60 93)

G:=sub<Sym(120)| (1,74)(2,75)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,76)(27,77)(28,78)(29,79)(30,80)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,40,29,59)(2,39,30,58)(3,38,16,57)(4,37,17,56)(5,36,18,55)(6,35,19,54)(7,34,20,53)(8,33,21,52)(9,32,22,51)(10,31,23,50)(11,45,24,49)(12,44,25,48)(13,43,26,47)(14,42,27,46)(15,41,28,60)(61,92,81,118)(62,91,82,117)(63,105,83,116)(64,104,84,115)(65,103,85,114)(66,102,86,113)(67,101,87,112)(68,100,88,111)(69,99,89,110)(70,98,90,109)(71,97,76,108)(72,96,77,107)(73,95,78,106)(74,94,79,120)(75,93,80,119), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,75)(16,77)(17,76)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,84)(25,83)(26,82)(27,81)(28,80)(29,79)(30,78)(31,114)(32,113)(33,112)(34,111)(35,110)(36,109)(37,108)(38,107)(39,106)(40,120)(41,119)(42,118)(43,117)(44,116)(45,115)(46,92)(47,91)(48,105)(49,104)(50,103)(51,102)(52,101)(53,100)(54,99)(55,98)(56,97)(57,96)(58,95)(59,94)(60,93)>;

G:=Group( (1,74)(2,75)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,76)(27,77)(28,78)(29,79)(30,80)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,40,29,59)(2,39,30,58)(3,38,16,57)(4,37,17,56)(5,36,18,55)(6,35,19,54)(7,34,20,53)(8,33,21,52)(9,32,22,51)(10,31,23,50)(11,45,24,49)(12,44,25,48)(13,43,26,47)(14,42,27,46)(15,41,28,60)(61,92,81,118)(62,91,82,117)(63,105,83,116)(64,104,84,115)(65,103,85,114)(66,102,86,113)(67,101,87,112)(68,100,88,111)(69,99,89,110)(70,98,90,109)(71,97,76,108)(72,96,77,107)(73,95,78,106)(74,94,79,120)(75,93,80,119), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,75)(16,77)(17,76)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,84)(25,83)(26,82)(27,81)(28,80)(29,79)(30,78)(31,114)(32,113)(33,112)(34,111)(35,110)(36,109)(37,108)(38,107)(39,106)(40,120)(41,119)(42,118)(43,117)(44,116)(45,115)(46,92)(47,91)(48,105)(49,104)(50,103)(51,102)(52,101)(53,100)(54,99)(55,98)(56,97)(57,96)(58,95)(59,94)(60,93) );

G=PermutationGroup([[(1,74),(2,75),(3,61),(4,62),(5,63),(6,64),(7,65),(8,66),(9,67),(10,68),(11,69),(12,70),(13,71),(14,72),(15,73),(16,81),(17,82),(18,83),(19,84),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,76),(27,77),(28,78),(29,79),(30,80),(31,100),(32,101),(33,102),(34,103),(35,104),(36,105),(37,91),(38,92),(39,93),(40,94),(41,95),(42,96),(43,97),(44,98),(45,99),(46,107),(47,108),(48,109),(49,110),(50,111),(51,112),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,106)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,40,29,59),(2,39,30,58),(3,38,16,57),(4,37,17,56),(5,36,18,55),(6,35,19,54),(7,34,20,53),(8,33,21,52),(9,32,22,51),(10,31,23,50),(11,45,24,49),(12,44,25,48),(13,43,26,47),(14,42,27,46),(15,41,28,60),(61,92,81,118),(62,91,82,117),(63,105,83,116),(64,104,84,115),(65,103,85,114),(66,102,86,113),(67,101,87,112),(68,100,88,111),(69,99,89,110),(70,98,90,109),(71,97,76,108),(72,96,77,107),(73,95,78,106),(74,94,79,120),(75,93,80,119)], [(1,74),(2,73),(3,72),(4,71),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,63),(13,62),(14,61),(15,75),(16,77),(17,76),(18,90),(19,89),(20,88),(21,87),(22,86),(23,85),(24,84),(25,83),(26,82),(27,81),(28,80),(29,79),(30,78),(31,114),(32,113),(33,112),(34,111),(35,110),(36,109),(37,108),(38,107),(39,106),(40,120),(41,119),(42,118),(43,117),(44,116),(45,115),(46,92),(47,91),(48,105),(49,104),(50,103),(51,102),(52,101),(53,100),(54,99),(55,98),(56,97),(57,96),(58,95),(59,94),(60,93)]])

C2xC15:7D4 is a maximal subgroup of
C15:9(C23:C4)  C23.6D30  Dic15.19D4  D30:6D4  C10.(C2xD12)  C6.D4:D5  Dic15:3D4  C15:26(C4xD4)  C15:28(C4xD4)  D30:7D4  Dic15:4D4  D30.16D4  (C2xC6):8D20  (C2xC10):4D12  Dic15:5D4  (C2xC6):D20  (C2xC10):11D12  D30:8D4  Dic15:19D4  D30:16D4  D30.28D4  D30:9D4  C23.11D30  C22.D60  C23.28D30  C60:29D4  D30:17D4  C60:2D4  Dic15:12D4  C60:3D4  C24:5D15  C2xD5xC3:D4  C2xS3xC5:D4  C15:2+ 1+4  C2xD4xD15  D4:6D30
C2xC15:7D4 is a maximal quotient of
C60.205D4  C23.28D30  C60:29D4  D4.D30  C23.22D30  C60.17D4  D30:17D4  C60:2D4  Dic15:12D4  C60:3D4  Q8.11D30  Dic15:4Q8  D30:7Q8  C60.23D4  D4:D30  D4.8D30  D4.9D30  C24:5D15

66 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A···6G10A···10N15A15B15C15D30A···30AB
order12222222344556···610···101515151530···30
size111122303023030222···22···222222···2

66 irreducible representations

dim111112222222222
type++++++++++++
imageC1C2C2C2C2S3D4D5D6D10C3:D4D15C5:D4D30C15:7D4
kernelC2xC15:7D4C2xDic15C15:7D4C22xD15C22xC30C22xC10C30C22xC6C2xC10C2xC6C10C23C6C22C2
# reps11411122364481216

Matrix representation of C2xC15:7D4 in GL4(F61) generated by

60000
06000
0010
0001
,
181800
436000
004731
003025
,
1000
436000
00378
002724
,
60000
18100
002533
003136
G:=sub<GL(4,GF(61))| [60,0,0,0,0,60,0,0,0,0,1,0,0,0,0,1],[18,43,0,0,18,60,0,0,0,0,47,30,0,0,31,25],[1,43,0,0,0,60,0,0,0,0,37,27,0,0,8,24],[60,18,0,0,0,1,0,0,0,0,25,31,0,0,33,36] >;

C2xC15:7D4 in GAP, Magma, Sage, TeX

C_2\times C_{15}\rtimes_7D_4
% in TeX

G:=Group("C2xC15:7D4");
// GroupNames label

G:=SmallGroup(240,184);
// by ID

G=gap.SmallGroup(240,184);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,218,964,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^15=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<