Copied to
clipboard

G = C2xS3xDic5order 240 = 24·3·5

Direct product of C2, S3 and Dic5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xS3xDic5, D6.11D10, C30.18C23, Dic15:8C22, C10:4(C4xS3), C30:5(C2xC4), (S3xC10):4C4, C15:6(C22xC4), C6:1(C2xDic5), (C6xDic5):3C2, (C2xC10).14D6, (C2xC6).13D10, C3:1(C22xDic5), (C2xDic15):9C2, (C22xS3).2D5, C22.12(S3xD5), C6.18(C22xD5), C10.18(C22xS3), (C2xC30).12C22, (C3xDic5):5C22, (S3xC10).11C22, C5:5(S3xC2xC4), C2.3(C2xS3xD5), (C5xS3):3(C2xC4), (S3xC2xC10).2C2, SmallGroup(240,142)

Series: Derived Chief Lower central Upper central

C1C15 — C2xS3xDic5
C1C5C15C30C3xDic5S3xDic5 — C2xS3xDic5
C15 — C2xS3xDic5
C1C22

Generators and relations for C2xS3xDic5
 G = < a,b,c,d,e | a2=b3=c2=d10=1, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 336 in 108 conjugacy classes, 56 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2xC4, C23, C10, C10, C10, Dic3, C12, D6, C2xC6, C15, C22xC4, Dic5, Dic5, C2xC10, C2xC10, C4xS3, C2xDic3, C2xC12, C22xS3, C5xS3, C30, C30, C2xDic5, C2xDic5, C22xC10, S3xC2xC4, C3xDic5, Dic15, S3xC10, C2xC30, C22xDic5, S3xDic5, C6xDic5, C2xDic15, S3xC2xC10, C2xS3xDic5
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D5, D6, C22xC4, Dic5, D10, C4xS3, C22xS3, C2xDic5, C22xD5, S3xC2xC4, S3xD5, C22xDic5, S3xDic5, C2xS3xD5, C2xS3xDic5

Smallest permutation representation of C2xS3xDic5
On 120 points
Generators in S120
(1 59)(2 60)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 91)(21 48)(22 49)(23 50)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 68)(32 69)(33 70)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)
(1 21 33)(2 22 34)(3 23 35)(4 24 36)(5 25 37)(6 26 38)(7 27 39)(8 28 40)(9 29 31)(10 30 32)(11 111 107)(12 112 108)(13 113 109)(14 114 110)(15 115 101)(16 116 102)(17 117 103)(18 118 104)(19 119 105)(20 120 106)(41 63 52)(42 64 53)(43 65 54)(44 66 55)(45 67 56)(46 68 57)(47 69 58)(48 70 59)(49 61 60)(50 62 51)(71 96 85)(72 97 86)(73 98 87)(74 99 88)(75 100 89)(76 91 90)(77 92 81)(78 93 82)(79 94 83)(80 95 84)
(1 54)(2 55)(3 56)(4 57)(5 58)(6 59)(7 60)(8 51)(9 52)(10 53)(11 72)(12 73)(13 74)(14 75)(15 76)(16 77)(17 78)(18 79)(19 80)(20 71)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 61)(28 62)(29 63)(30 64)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(40 50)(81 116)(82 117)(83 118)(84 119)(85 120)(86 111)(87 112)(88 113)(89 114)(90 115)(91 101)(92 102)(93 103)(94 104)(95 105)(96 106)(97 107)(98 108)(99 109)(100 110)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 86 6 81)(2 85 7 90)(3 84 8 89)(4 83 9 88)(5 82 10 87)(11 70 16 65)(12 69 17 64)(13 68 18 63)(14 67 19 62)(15 66 20 61)(21 72 26 77)(22 71 27 76)(23 80 28 75)(24 79 29 74)(25 78 30 73)(31 99 36 94)(32 98 37 93)(33 97 38 92)(34 96 39 91)(35 95 40 100)(41 109 46 104)(42 108 47 103)(43 107 48 102)(44 106 49 101)(45 105 50 110)(51 114 56 119)(52 113 57 118)(53 112 58 117)(54 111 59 116)(55 120 60 115)

G:=sub<Sym(120)| (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,91)(21,48)(22,49)(23,50)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,68)(32,69)(33,70)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,21,33)(2,22,34)(3,23,35)(4,24,36)(5,25,37)(6,26,38)(7,27,39)(8,28,40)(9,29,31)(10,30,32)(11,111,107)(12,112,108)(13,113,109)(14,114,110)(15,115,101)(16,116,102)(17,117,103)(18,118,104)(19,119,105)(20,120,106)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,61)(28,62)(29,63)(30,64)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,86,6,81)(2,85,7,90)(3,84,8,89)(4,83,9,88)(5,82,10,87)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,72,26,77)(22,71,27,76)(23,80,28,75)(24,79,29,74)(25,78,30,73)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115)>;

G:=Group( (1,59)(2,60)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,91)(21,48)(22,49)(23,50)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,68)(32,69)(33,70)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,21,33)(2,22,34)(3,23,35)(4,24,36)(5,25,37)(6,26,38)(7,27,39)(8,28,40)(9,29,31)(10,30,32)(11,111,107)(12,112,108)(13,113,109)(14,114,110)(15,115,101)(16,116,102)(17,117,103)(18,118,104)(19,119,105)(20,120,106)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(45,67,56)(46,68,57)(47,69,58)(48,70,59)(49,61,60)(50,62,51)(71,96,85)(72,97,86)(73,98,87)(74,99,88)(75,100,89)(76,91,90)(77,92,81)(78,93,82)(79,94,83)(80,95,84), (1,54)(2,55)(3,56)(4,57)(5,58)(6,59)(7,60)(8,51)(9,52)(10,53)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,71)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,61)(28,62)(29,63)(30,64)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,86,6,81)(2,85,7,90)(3,84,8,89)(4,83,9,88)(5,82,10,87)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,72,26,77)(22,71,27,76)(23,80,28,75)(24,79,29,74)(25,78,30,73)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,114,56,119)(52,113,57,118)(53,112,58,117)(54,111,59,116)(55,120,60,115) );

G=PermutationGroup([[(1,59),(2,60),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,91),(21,48),(22,49),(23,50),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,68),(32,69),(33,70),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)], [(1,21,33),(2,22,34),(3,23,35),(4,24,36),(5,25,37),(6,26,38),(7,27,39),(8,28,40),(9,29,31),(10,30,32),(11,111,107),(12,112,108),(13,113,109),(14,114,110),(15,115,101),(16,116,102),(17,117,103),(18,118,104),(19,119,105),(20,120,106),(41,63,52),(42,64,53),(43,65,54),(44,66,55),(45,67,56),(46,68,57),(47,69,58),(48,70,59),(49,61,60),(50,62,51),(71,96,85),(72,97,86),(73,98,87),(74,99,88),(75,100,89),(76,91,90),(77,92,81),(78,93,82),(79,94,83),(80,95,84)], [(1,54),(2,55),(3,56),(4,57),(5,58),(6,59),(7,60),(8,51),(9,52),(10,53),(11,72),(12,73),(13,74),(14,75),(15,76),(16,77),(17,78),(18,79),(19,80),(20,71),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,61),(28,62),(29,63),(30,64),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(40,50),(81,116),(82,117),(83,118),(84,119),(85,120),(86,111),(87,112),(88,113),(89,114),(90,115),(91,101),(92,102),(93,103),(94,104),(95,105),(96,106),(97,107),(98,108),(99,109),(100,110)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,86,6,81),(2,85,7,90),(3,84,8,89),(4,83,9,88),(5,82,10,87),(11,70,16,65),(12,69,17,64),(13,68,18,63),(14,67,19,62),(15,66,20,61),(21,72,26,77),(22,71,27,76),(23,80,28,75),(24,79,29,74),(25,78,30,73),(31,99,36,94),(32,98,37,93),(33,97,38,92),(34,96,39,91),(35,95,40,100),(41,109,46,104),(42,108,47,103),(43,107,48,102),(44,106,49,101),(45,105,50,110),(51,114,56,119),(52,113,57,118),(53,112,58,117),(54,111,59,116),(55,120,60,115)]])

C2xS3xDic5 is a maximal subgroup of
Dic5.22D12  D6.(C4xD5)  (S3xDic5):C4  Dic5:4D12  Dic15:14D4  D6:1Dic10  Dic5:D12  D6:2Dic10  (C2xD12).D5  D6.D20  D6:3Dic10  Dic15:8D4  D6:4Dic10  D6:(C4xD5)  Dic15:9D4  Dic15:2D4  D6.9D20  (S3xC10).D4  Dic15:4D4  Dic15:17D4  (S3xC10):D4  S3xC2xC4xD5
C2xS3xDic5 is a maximal quotient of
D12.2Dic5  D12.Dic5  (S3xC20):5C4  Dic15:7Q8  (S3xC20):7C4  Dic15:8D4  C23.26(S3xD5)  Dic15:17D4

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H5A5B6A6B6C10A···10F10G···10N12A12B12C12D15A15B30A···30F
order122222223444444445566610···1010···1012121212151530···30
size111133332555515151515222222···26···610101010444···4

48 irreducible representations

dim11111122222222444
type+++++++++-+++-+
imageC1C2C2C2C2C4S3D5D6D6Dic5D10D10C4xS3S3xD5S3xDic5C2xS3xD5
kernelC2xS3xDic5S3xDic5C6xDic5C2xDic15S3xC2xC10S3xC10C2xDic5C22xS3Dic5C2xC10D6D6C2xC6C10C22C2C2
# reps14111812218424242

Matrix representation of C2xS3xDic5 in GL4(F61) generated by

1000
0100
00600
00060
,
11500
125900
0010
0001
,
11500
06000
00600
00060
,
60000
06000
00431
00600
,
50000
05000
00169
005345
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[1,12,0,0,15,59,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,15,60,0,0,0,0,60,0,0,0,0,60],[60,0,0,0,0,60,0,0,0,0,43,60,0,0,1,0],[50,0,0,0,0,50,0,0,0,0,16,53,0,0,9,45] >;

C2xS3xDic5 in GAP, Magma, Sage, TeX

C_2\times S_3\times {\rm Dic}_5
% in TeX

G:=Group("C2xS3xDic5");
// GroupNames label

G:=SmallGroup(240,142);
// by ID

G=gap.SmallGroup(240,142);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^10=1,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<