Extensions 1→N→G→Q→1 with N=C153C8 and Q=C2

Direct product G=N×Q with N=C153C8 and Q=C2
dρLabelID
C2×C153C8240C2xC15:3C8240,70

Semidirect products G=N:Q with N=C153C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C153C81C2 = D4⋊D15φ: C2/C1C2 ⊆ Out C153C81204+C15:3C8:1C2240,76
C153C82C2 = D4.D15φ: C2/C1C2 ⊆ Out C153C81204-C15:3C8:2C2240,77
C153C83C2 = Q82D15φ: C2/C1C2 ⊆ Out C153C81204+C15:3C8:3C2240,78
C153C84C2 = C40⋊S3φ: C2/C1C2 ⊆ Out C153C81202C15:3C8:4C2240,66
C153C85C2 = C60.7C4φ: C2/C1C2 ⊆ Out C153C81202C15:3C8:5C2240,71
C153C86C2 = C15⋊D8φ: C2/C1C2 ⊆ Out C153C81204C15:3C8:6C2240,13
C153C87C2 = C30.D4φ: C2/C1C2 ⊆ Out C153C81204C15:3C8:7C2240,16
C153C88C2 = C20.D6φ: C2/C1C2 ⊆ Out C153C81204C15:3C8:8C2240,17
C153C89C2 = D5×C3⋊C8φ: C2/C1C2 ⊆ Out C153C81204C15:3C8:9C2240,7
C153C810C2 = S3×C52C8φ: C2/C1C2 ⊆ Out C153C81204C15:3C8:10C2240,8
C153C811C2 = C20.32D6φ: C2/C1C2 ⊆ Out C153C81204C15:3C8:11C2240,10
C153C812C2 = D6.Dic5φ: C2/C1C2 ⊆ Out C153C81204C15:3C8:12C2240,11
C153C813C2 = C8×D15φ: trivial image1202C15:3C8:13C2240,65

Non-split extensions G=N.Q with N=C153C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C153C8.1C2 = C157Q16φ: C2/C1C2 ⊆ Out C153C82404-C15:3C8.1C2240,79
C153C8.2C2 = C15⋊Q16φ: C2/C1C2 ⊆ Out C153C82404C15:3C8.2C2240,22

׿
×
𝔽