Extensions 1→N→G→Q→1 with N=C10×A4 and Q=C2

Direct product G=N×Q with N=C10×A4 and Q=C2
dρLabelID
A4×C2×C1060A4xC2xC10240,203

Semidirect products G=N:Q with N=C10×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×A4)⋊1C2 = C2×C5⋊S4φ: C2/C1C2 ⊆ Out C10×A4306+(C10xA4):1C2240,197
(C10×A4)⋊2C2 = C2×D5×A4φ: C2/C1C2 ⊆ Out C10×A4306+(C10xA4):2C2240,198
(C10×A4)⋊3C2 = C10×S4φ: C2/C1C2 ⊆ Out C10×A4303(C10xA4):3C2240,196

Non-split extensions G=N.Q with N=C10×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×A4).1C2 = A4⋊Dic5φ: C2/C1C2 ⊆ Out C10×A4606-(C10xA4).1C2240,107
(C10×A4).2C2 = A4×Dic5φ: C2/C1C2 ⊆ Out C10×A4606-(C10xA4).2C2240,110
(C10×A4).3C2 = C5×A4⋊C4φ: C2/C1C2 ⊆ Out C10×A4603(C10xA4).3C2240,104
(C10×A4).4C2 = A4×C20φ: trivial image603(C10xA4).4C2240,152

׿
×
𝔽