direct product, metabelian, soluble, monomial, A-group
Aliases: C2×D5×A4, C10⋊(C2×A4), C5⋊(C22×A4), (C23×D5)⋊C3, C23⋊(C3×D5), C22⋊(C6×D5), (C22×C10)⋊C6, (C22×D5)⋊C6, (C10×A4)⋊2C2, (C5×A4)⋊3C22, (C2×C10)⋊(C2×C6), SmallGroup(240,198)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C10 — C2×D5×A4 |
Generators and relations for C2×D5×A4
G = < a,b,c,d,e,f | a2=b5=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >
Subgroups: 448 in 78 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2, C3, C22, C22, C5, C6, C23, C23, D5, D5, C10, C10, A4, C2×C6, C15, C24, D10, D10, C2×C10, C2×C10, C2×A4, C2×A4, C3×D5, C30, C22×D5, C22×D5, C22×C10, C22×A4, C5×A4, C6×D5, C23×D5, D5×A4, C10×A4, C2×D5×A4
Quotients: C1, C2, C3, C22, C6, D5, A4, C2×C6, D10, C2×A4, C3×D5, C22×A4, C6×D5, D5×A4, C2×D5×A4
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 9)(2 10)(3 6)(4 7)(5 8)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 24 14)(2 25 15)(3 21 11)(4 22 12)(5 23 13)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)
G:=sub<Sym(30)| (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20), (1,9)(2,10)(3,6)(4,7)(5,8)(21,26)(22,27)(23,28)(24,29)(25,30), (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)>;
G:=Group( (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20), (1,9)(2,10)(3,6)(4,7)(5,8)(21,26)(22,27)(23,28)(24,29)(25,30), (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20) );
G=PermutationGroup([[(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,9),(2,10),(3,6),(4,7),(5,8),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,24,14),(2,25,15),(3,21,11),(4,22,12),(5,23,13),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20)]])
G:=TransitiveGroup(30,55);
C2×D5×A4 is a maximal subgroup of
D10⋊S4 A4⋊D20
C2×D5×A4 is a maximal quotient of SL2(𝔽3).11D10 Dic10.A4 D20.A4
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 10A | 10B | 10C | 10D | 10E | 10F | 15A | 15B | 15C | 15D | 30A | 30B | 30C | 30D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 15 | 15 | 15 | 15 | 30 | 30 | 30 | 30 |
size | 1 | 1 | 3 | 3 | 5 | 5 | 15 | 15 | 4 | 4 | 2 | 2 | 4 | 4 | 20 | 20 | 20 | 20 | 2 | 2 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C6 | C6 | D5 | D10 | C3×D5 | C6×D5 | A4 | C2×A4 | C2×A4 | D5×A4 | C2×D5×A4 |
kernel | C2×D5×A4 | D5×A4 | C10×A4 | C23×D5 | C22×D5 | C22×C10 | C2×A4 | A4 | C23 | C22 | D10 | D5 | C10 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 2 | 2 |
Matrix representation of C2×D5×A4 ►in GL5(𝔽31)
30 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
30 | 18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 19 | 30 | 0 |
0 | 0 | 29 | 0 | 30 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 |
0 | 0 | 12 | 1 | 0 |
0 | 0 | 0 | 0 | 30 |
25 | 0 | 0 | 0 | 0 |
0 | 25 | 0 | 0 | 0 |
0 | 0 | 25 | 0 | 25 |
0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 30 | 6 |
G:=sub<GL(5,GF(31))| [30,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,30,0,0,0,1,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,19,29,0,0,0,30,0,0,0,0,0,30],[1,0,0,0,0,0,1,0,0,0,0,0,30,12,0,0,0,0,1,0,0,0,0,0,30],[25,0,0,0,0,0,25,0,0,0,0,0,25,0,0,0,0,0,0,30,0,0,25,5,6] >;
C2×D5×A4 in GAP, Magma, Sage, TeX
C_2\times D_5\times A_4
% in TeX
G:=Group("C2xD5xA4");
// GroupNames label
G:=SmallGroup(240,198);
// by ID
G=gap.SmallGroup(240,198);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,2,-5,231,106,6917]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^5=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations