Extensions 1→N→G→Q→1 with N=C4×D5 and Q=S3

Direct product G=N×Q with N=C4×D5 and Q=S3
dρLabelID
C4×S3×D5604C4xS3xD5240,135

Semidirect products G=N:Q with N=C4×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×D5)⋊1S3 = D125D5φ: S3/C3C2 ⊆ Out C4×D51204-(C4xD5):1S3240,133
(C4×D5)⋊2S3 = C12.28D10φ: S3/C3C2 ⊆ Out C4×D51204+(C4xD5):2S3240,134
(C4×D5)⋊3S3 = D5×D12φ: S3/C3C2 ⊆ Out C4×D5604+(C4xD5):3S3240,136
(C4×D5)⋊4S3 = D6.D10φ: S3/C3C2 ⊆ Out C4×D51204(C4xD5):4S3240,132

Non-split extensions G=N.Q with N=C4×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×D5).1S3 = D5×Dic6φ: S3/C3C2 ⊆ Out C4×D51204-(C4xD5).1S3240,125
(C4×D5).2S3 = C20.32D6φ: S3/C3C2 ⊆ Out C4×D51204(C4xD5).2S3240,10
(C4×D5).3S3 = C12.F5φ: S3/C3C2 ⊆ Out C4×D51204(C4xD5).3S3240,119
(C4×D5).4S3 = C60⋊C4φ: S3/C3C2 ⊆ Out C4×D5604(C4xD5).4S3240,121
(C4×D5).5S3 = C60.C4φ: S3/C3C2 ⊆ Out C4×D51204(C4xD5).5S3240,118
(C4×D5).6S3 = C4×C3⋊F5φ: S3/C3C2 ⊆ Out C4×D5604(C4xD5).6S3240,120
(C4×D5).7S3 = D5×C3⋊C8φ: trivial image1204(C4xD5).7S3240,7

׿
×
𝔽