Extensions 1→N→G→Q→1 with N=C15 and Q=M4(2)

Direct product G=N×Q with N=C15 and Q=M4(2)
dρLabelID
C15×M4(2)1202C15xM4(2)240,85

Semidirect products G=N:Q with N=C15 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C151M4(2) = D6.F5φ: M4(2)/C2C2×C4 ⊆ Aut C151208-C15:1M4(2)240,100
C152M4(2) = Dic3.F5φ: M4(2)/C2C2×C4 ⊆ Aut C151208+C15:2M4(2)240,101
C153M4(2) = C12.F5φ: M4(2)/C4C4 ⊆ Aut C151204C15:3M4(2)240,119
C154M4(2) = C3×C4.F5φ: M4(2)/C4C4 ⊆ Aut C151204C15:4M4(2)240,112
C155M4(2) = C20.32D6φ: M4(2)/C4C22 ⊆ Aut C151204C15:5M4(2)240,10
C156M4(2) = D6.Dic5φ: M4(2)/C4C22 ⊆ Aut C151204C15:6M4(2)240,11
C157M4(2) = D30.5C4φ: M4(2)/C4C22 ⊆ Aut C151204C15:7M4(2)240,12
C158M4(2) = C158M4(2)φ: M4(2)/C22C4 ⊆ Aut C151204C15:8M4(2)240,123
C159M4(2) = C3×C22.F5φ: M4(2)/C22C4 ⊆ Aut C151204C15:9M4(2)240,116
C1510M4(2) = C40⋊S3φ: M4(2)/C8C2 ⊆ Aut C151202C15:10M4(2)240,66
C1511M4(2) = C3×C8⋊D5φ: M4(2)/C8C2 ⊆ Aut C151202C15:11M4(2)240,34
C1512M4(2) = C5×C8⋊S3φ: M4(2)/C8C2 ⊆ Aut C151202C15:12M4(2)240,50
C1513M4(2) = C60.7C4φ: M4(2)/C2×C4C2 ⊆ Aut C151202C15:13M4(2)240,71
C1514M4(2) = C3×C4.Dic5φ: M4(2)/C2×C4C2 ⊆ Aut C151202C15:14M4(2)240,39
C1515M4(2) = C5×C4.Dic3φ: M4(2)/C2×C4C2 ⊆ Aut C151202C15:15M4(2)240,55


׿
×
𝔽