Copied to
clipboard

G = D6.F5order 240 = 24·3·5

The non-split extension by D6 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.F5, C151M4(2), Dic5.9D6, Dic15.2C4, C5⋊C81S3, C15⋊C83C2, C52(C8⋊S3), C2.6(S3×F5), C6.6(C2×F5), C10.6(C4×S3), C30.6(C2×C4), (S3×C10).2C4, C31(C22.F5), (S3×Dic5).3C2, (C3×Dic5).9C22, (C3×C5⋊C8)⋊3C2, SmallGroup(240,100)

Series: Derived Chief Lower central Upper central

C1C30 — D6.F5
C1C5C15C30C3×Dic5C3×C5⋊C8 — D6.F5
C15C30 — D6.F5
C1C2

Generators and relations for D6.F5
 G = < a,b,c,d | a6=b2=c5=1, d4=a3, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c3 >

6C2
3C22
5C4
15C4
2S3
6C10
5C8
15C8
15C2×C4
5Dic3
5C12
3Dic5
3C2×C10
2C5×S3
15M4(2)
5C24
5C3⋊C8
5C4×S3
3C5⋊C8
3C2×Dic5
5C8⋊S3
3C22.F5

Character table of D6.F5

 class 12A2B34A4B4C568A8B8C8D10A10B10C12A12B1524A24B24C24D30
 size 1162553042101030304121210108101010108
ρ1111111111111111111111111    trivial
ρ211-1111-11111-1-11-1-111111111    linear of order 2
ρ3111111111-1-1-1-1111111-1-1-1-11    linear of order 2
ρ411-1111-111-1-1111-1-1111-1-1-1-11    linear of order 2
ρ51111-1-1-111-ii-ii111-1-11i-i-ii1    linear of order 4
ρ611-11-1-1111-iii-i1-1-1-1-11i-i-ii1    linear of order 4
ρ71111-1-1-111i-ii-i111-1-11-iii-i1    linear of order 4
ρ811-11-1-1111i-i-ii1-1-1-1-11-iii-i1    linear of order 4
ρ9220-12202-12200200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ10220-12202-1-2-200200-1-1-11111-1    orthogonal lifted from D6
ρ112-202-2i2i02-20000-200-2i2i20000-2    complex lifted from M4(2)
ρ122-2022i-2i02-20000-2002i-2i20000-2    complex lifted from M4(2)
ρ13220-1-2-202-1-2i2i0020011-1-iii-i-1    complex lifted from C4×S3
ρ14220-1-2-202-12i-2i0020011-1i-i-ii-1    complex lifted from C4×S3
ρ152-20-1-2i2i0210000-200i-i-183ζ38385ζ3858ζ3887ζ3871    complex lifted from C8⋊S3
ρ162-20-12i-2i0210000-200-ii-185ζ38583ζ38387ζ3878ζ381    complex lifted from C8⋊S3
ρ172-20-12i-2i0210000-200-ii-18ζ3887ζ38783ζ38385ζ3851    complex lifted from C8⋊S3
ρ182-20-1-2i2i0210000-200i-i-187ζ3878ζ3885ζ38583ζ3831    complex lifted from C8⋊S3
ρ1944-44000-140000-11100-10000-1    orthogonal lifted from C2×F5
ρ204444000-140000-1-1-100-10000-1    orthogonal lifted from F5
ρ214-404000-1-400001-5500-100001    symplectic lifted from C22.F5, Schur index 2
ρ224-404000-1-4000015-500-100001    symplectic lifted from C22.F5, Schur index 2
ρ23880-4000-2-40000-20000100001    orthogonal lifted from S3×F5
ρ248-80-4000-2400002000010000-1    symplectic faithful, Schur index 2

Smallest permutation representation of D6.F5
On 120 points
Generators in S120
(1 15 50 5 11 54)(2 16 51 6 12 55)(3 9 52 7 13 56)(4 10 53 8 14 49)(17 110 29 21 106 25)(18 111 30 22 107 26)(19 112 31 23 108 27)(20 105 32 24 109 28)(33 75 113 37 79 117)(34 76 114 38 80 118)(35 77 115 39 73 119)(36 78 116 40 74 120)(41 62 103 45 58 99)(42 63 104 46 59 100)(43 64 97 47 60 101)(44 57 98 48 61 102)(65 91 87 69 95 83)(66 92 88 70 96 84)(67 93 81 71 89 85)(68 94 82 72 90 86)
(1 54)(2 51)(3 56)(4 53)(5 50)(6 55)(7 52)(8 49)(9 13)(11 15)(18 22)(20 24)(25 110)(26 107)(27 112)(28 109)(29 106)(30 111)(31 108)(32 105)(33 37)(35 39)(41 45)(43 47)(57 102)(58 99)(59 104)(60 101)(61 98)(62 103)(63 100)(64 97)(66 70)(68 72)(73 119)(74 116)(75 113)(76 118)(77 115)(78 120)(79 117)(80 114)(81 89)(82 94)(83 91)(84 96)(85 93)(86 90)(87 95)(88 92)
(1 99 88 113 28)(2 114 100 29 81)(3 30 115 82 101)(4 83 31 102 116)(5 103 84 117 32)(6 118 104 25 85)(7 26 119 86 97)(8 87 27 98 120)(9 22 39 72 43)(10 65 23 44 40)(11 45 66 33 24)(12 34 46 17 67)(13 18 35 68 47)(14 69 19 48 36)(15 41 70 37 20)(16 38 42 21 71)(49 95 112 61 78)(50 62 96 79 105)(51 80 63 106 89)(52 107 73 90 64)(53 91 108 57 74)(54 58 92 75 109)(55 76 59 110 93)(56 111 77 94 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,15,50,5,11,54)(2,16,51,6,12,55)(3,9,52,7,13,56)(4,10,53,8,14,49)(17,110,29,21,106,25)(18,111,30,22,107,26)(19,112,31,23,108,27)(20,105,32,24,109,28)(33,75,113,37,79,117)(34,76,114,38,80,118)(35,77,115,39,73,119)(36,78,116,40,74,120)(41,62,103,45,58,99)(42,63,104,46,59,100)(43,64,97,47,60,101)(44,57,98,48,61,102)(65,91,87,69,95,83)(66,92,88,70,96,84)(67,93,81,71,89,85)(68,94,82,72,90,86), (1,54)(2,51)(3,56)(4,53)(5,50)(6,55)(7,52)(8,49)(9,13)(11,15)(18,22)(20,24)(25,110)(26,107)(27,112)(28,109)(29,106)(30,111)(31,108)(32,105)(33,37)(35,39)(41,45)(43,47)(57,102)(58,99)(59,104)(60,101)(61,98)(62,103)(63,100)(64,97)(66,70)(68,72)(73,119)(74,116)(75,113)(76,118)(77,115)(78,120)(79,117)(80,114)(81,89)(82,94)(83,91)(84,96)(85,93)(86,90)(87,95)(88,92), (1,99,88,113,28)(2,114,100,29,81)(3,30,115,82,101)(4,83,31,102,116)(5,103,84,117,32)(6,118,104,25,85)(7,26,119,86,97)(8,87,27,98,120)(9,22,39,72,43)(10,65,23,44,40)(11,45,66,33,24)(12,34,46,17,67)(13,18,35,68,47)(14,69,19,48,36)(15,41,70,37,20)(16,38,42,21,71)(49,95,112,61,78)(50,62,96,79,105)(51,80,63,106,89)(52,107,73,90,64)(53,91,108,57,74)(54,58,92,75,109)(55,76,59,110,93)(56,111,77,94,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,15,50,5,11,54)(2,16,51,6,12,55)(3,9,52,7,13,56)(4,10,53,8,14,49)(17,110,29,21,106,25)(18,111,30,22,107,26)(19,112,31,23,108,27)(20,105,32,24,109,28)(33,75,113,37,79,117)(34,76,114,38,80,118)(35,77,115,39,73,119)(36,78,116,40,74,120)(41,62,103,45,58,99)(42,63,104,46,59,100)(43,64,97,47,60,101)(44,57,98,48,61,102)(65,91,87,69,95,83)(66,92,88,70,96,84)(67,93,81,71,89,85)(68,94,82,72,90,86), (1,54)(2,51)(3,56)(4,53)(5,50)(6,55)(7,52)(8,49)(9,13)(11,15)(18,22)(20,24)(25,110)(26,107)(27,112)(28,109)(29,106)(30,111)(31,108)(32,105)(33,37)(35,39)(41,45)(43,47)(57,102)(58,99)(59,104)(60,101)(61,98)(62,103)(63,100)(64,97)(66,70)(68,72)(73,119)(74,116)(75,113)(76,118)(77,115)(78,120)(79,117)(80,114)(81,89)(82,94)(83,91)(84,96)(85,93)(86,90)(87,95)(88,92), (1,99,88,113,28)(2,114,100,29,81)(3,30,115,82,101)(4,83,31,102,116)(5,103,84,117,32)(6,118,104,25,85)(7,26,119,86,97)(8,87,27,98,120)(9,22,39,72,43)(10,65,23,44,40)(11,45,66,33,24)(12,34,46,17,67)(13,18,35,68,47)(14,69,19,48,36)(15,41,70,37,20)(16,38,42,21,71)(49,95,112,61,78)(50,62,96,79,105)(51,80,63,106,89)(52,107,73,90,64)(53,91,108,57,74)(54,58,92,75,109)(55,76,59,110,93)(56,111,77,94,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,15,50,5,11,54),(2,16,51,6,12,55),(3,9,52,7,13,56),(4,10,53,8,14,49),(17,110,29,21,106,25),(18,111,30,22,107,26),(19,112,31,23,108,27),(20,105,32,24,109,28),(33,75,113,37,79,117),(34,76,114,38,80,118),(35,77,115,39,73,119),(36,78,116,40,74,120),(41,62,103,45,58,99),(42,63,104,46,59,100),(43,64,97,47,60,101),(44,57,98,48,61,102),(65,91,87,69,95,83),(66,92,88,70,96,84),(67,93,81,71,89,85),(68,94,82,72,90,86)], [(1,54),(2,51),(3,56),(4,53),(5,50),(6,55),(7,52),(8,49),(9,13),(11,15),(18,22),(20,24),(25,110),(26,107),(27,112),(28,109),(29,106),(30,111),(31,108),(32,105),(33,37),(35,39),(41,45),(43,47),(57,102),(58,99),(59,104),(60,101),(61,98),(62,103),(63,100),(64,97),(66,70),(68,72),(73,119),(74,116),(75,113),(76,118),(77,115),(78,120),(79,117),(80,114),(81,89),(82,94),(83,91),(84,96),(85,93),(86,90),(87,95),(88,92)], [(1,99,88,113,28),(2,114,100,29,81),(3,30,115,82,101),(4,83,31,102,116),(5,103,84,117,32),(6,118,104,25,85),(7,26,119,86,97),(8,87,27,98,120),(9,22,39,72,43),(10,65,23,44,40),(11,45,66,33,24),(12,34,46,17,67),(13,18,35,68,47),(14,69,19,48,36),(15,41,70,37,20),(16,38,42,21,71),(49,95,112,61,78),(50,62,96,79,105),(51,80,63,106,89),(52,107,73,90,64),(53,91,108,57,74),(54,58,92,75,109),(55,76,59,110,93),(56,111,77,94,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

D6.F5 is a maximal subgroup of   D12.2F5  D12.F5  D15⋊M4(2)  C5⋊C8⋊D6  C5⋊C8.D6  S3×C22.F5  D15⋊C8⋊C2
D6.F5 is a maximal quotient of   C30.M4(2)  Dic5.22D12  Dic15⋊C8

Matrix representation of D6.F5 in GL6(𝔽241)

2402400000
100000
00240000
00024000
00002400
00000240
,
2402400000
010000
00240000
00024000
0023412310
0023412301
,
100000
010000
005224000
005324000
005151190190
001051240
,
100000
010000
00002401
00190123951
002051392400
001411392400

G:=sub<GL(6,GF(241))| [240,1,0,0,0,0,240,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[240,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,234,234,0,0,0,240,123,123,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,52,53,51,1,0,0,240,240,51,0,0,0,0,0,190,51,0,0,0,0,190,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,190,205,141,0,0,0,1,139,139,0,0,240,239,240,240,0,0,1,51,0,0] >;

D6.F5 in GAP, Magma, Sage, TeX

D_6.F_5
% in TeX

G:=Group("D6.F5");
// GroupNames label

G:=SmallGroup(240,100);
// by ID

G=gap.SmallGroup(240,100);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,121,50,490,3461,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^5=1,d^4=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of D6.F5 in TeX
Character table of D6.F5 in TeX

׿
×
𝔽