non-abelian, supersoluble, monomial
Aliases: He5⋊2C2, C52⋊2D5, C5.2(C5⋊D5), SmallGroup(250,8)
Series: Derived ►Chief ►Lower central ►Upper central
He5 — He5⋊C2 |
Generators and relations for He5⋊C2
G = < a,b,c,d | a5=b5=c5=d2=1, cac-1=ab=ba, dad=a-1b-1, bc=cb, bd=db, dcd=c-1 >
Character table of He5⋊C2
class | 1 | 2 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 5M | 5N | 5O | 5P | 10A | 10B | 10C | 10D | |
size | 1 | 25 | 1 | 1 | 1 | 1 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 25 | 25 | 25 | 25 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ6 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ7 | 2 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ8 | 2 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ9 | 2 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ12 | 2 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5 |
ρ15 | 5 | -1 | 5ζ52 | 5ζ53 | 5ζ54 | 5ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | complex faithful |
ρ16 | 5 | 1 | 5ζ52 | 5ζ53 | 5ζ54 | 5ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ5 | ζ52 | ζ53 | ζ54 | complex faithful |
ρ17 | 5 | 1 | 5ζ53 | 5ζ52 | 5ζ5 | 5ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54 | ζ53 | ζ52 | ζ5 | complex faithful |
ρ18 | 5 | -1 | 5ζ5 | 5ζ54 | 5ζ52 | 5ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | complex faithful |
ρ19 | 5 | 1 | 5ζ5 | 5ζ54 | 5ζ52 | 5ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53 | ζ5 | ζ54 | ζ52 | complex faithful |
ρ20 | 5 | -1 | 5ζ54 | 5ζ5 | 5ζ53 | 5ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | complex faithful |
ρ21 | 5 | 1 | 5ζ54 | 5ζ5 | 5ζ53 | 5ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ52 | ζ54 | ζ5 | ζ53 | complex faithful |
ρ22 | 5 | -1 | 5ζ53 | 5ζ52 | 5ζ5 | 5ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | complex faithful |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)
(1 25 9 19 12)(2 21 10 20 13)(3 22 6 16 14)(4 23 7 17 15)(5 24 8 18 11)
(1 2 14 7 11)(3 17 5 25 21)(4 8 19 20 6)(9 10 22 15 24)(12 13 16 23 18)
(2 11)(3 17)(4 6)(5 21)(7 14)(8 20)(10 24)(13 18)(15 22)(16 23)
G:=sub<Sym(25)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,9,19,12)(2,21,10,20,13)(3,22,6,16,14)(4,23,7,17,15)(5,24,8,18,11), (1,2,14,7,11)(3,17,5,25,21)(4,8,19,20,6)(9,10,22,15,24)(12,13,16,23,18), (2,11)(3,17)(4,6)(5,21)(7,14)(8,20)(10,24)(13,18)(15,22)(16,23)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,9,19,12)(2,21,10,20,13)(3,22,6,16,14)(4,23,7,17,15)(5,24,8,18,11), (1,2,14,7,11)(3,17,5,25,21)(4,8,19,20,6)(9,10,22,15,24)(12,13,16,23,18), (2,11)(3,17)(4,6)(5,21)(7,14)(8,20)(10,24)(13,18)(15,22)(16,23) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25)], [(1,25,9,19,12),(2,21,10,20,13),(3,22,6,16,14),(4,23,7,17,15),(5,24,8,18,11)], [(1,2,14,7,11),(3,17,5,25,21),(4,8,19,20,6),(9,10,22,15,24),(12,13,16,23,18)], [(2,11),(3,17),(4,6),(5,21),(7,14),(8,20),(10,24),(13,18),(15,22),(16,23)]])
G:=TransitiveGroup(25,22);
He5⋊C2 is a maximal subgroup of
C52⋊F5 He5⋊4C4 C52⋊D10
He5⋊C2 is a maximal quotient of He5⋊6C4
Matrix representation of He5⋊C2 ►in GL5(𝔽11)
0 | 0 | 4 | 10 | 2 |
5 | 0 | 1 | 9 | 9 |
0 | 3 | 10 | 2 | 9 |
0 | 0 | 5 | 1 | 7 |
0 | 0 | 0 | 9 | 0 |
9 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 9 |
8 | 1 | 0 | 0 | 0 |
3 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 10 | 3 |
1 | 8 | 1 | 0 | 0 |
0 | 3 | 3 | 0 | 0 |
0 | 1 | 8 | 0 | 0 |
0 | 0 | 4 | 3 | 10 |
0 | 4 | 0 | 8 | 8 |
G:=sub<GL(5,GF(11))| [0,5,0,0,0,0,0,3,0,0,4,1,10,5,0,10,9,2,1,9,2,9,9,7,0],[9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[8,3,1,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,0,10,0,0,0,1,3],[1,0,0,0,0,8,3,1,0,4,1,3,8,4,0,0,0,0,3,8,0,0,0,10,8] >;
He5⋊C2 in GAP, Magma, Sage, TeX
{\rm He}_5\rtimes C_2
% in TeX
G:=Group("He5:C2");
// GroupNames label
G:=SmallGroup(250,8);
// by ID
G=gap.SmallGroup(250,8);
# by ID
G:=PCGroup([4,-2,-5,-5,-5,65,482,366]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^5=c^5=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a^-1*b^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of He5⋊C2 in TeX
Character table of He5⋊C2 in TeX