p-group, metabelian, nilpotent (class 2), monomial
Aliases: He5, 5+ 1+2, C52⋊C5, C5.1C52, 5-Sylow(SL(3,5)), SmallGroup(125,3)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for He5
G = < a,b,c | a5=b5=c5=1, cac-1=ab=ba, bc=cb >
Character table of He5
class | 1 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 5M | 5N | 5O | 5P | 5Q | 5R | 5S | 5T | 5U | 5V | 5W | 5X | 5Y | 5Z | 5AA | 5AB | |
size | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ4 | 1 | 1 | 1 | 1 | 1 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ9 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 |
ρ10 | 1 | 1 | 1 | 1 | 1 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 |
ρ11 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 |
ρ12 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 |
ρ13 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 |
ρ14 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 |
ρ15 | 1 | 1 | 1 | 1 | 1 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 |
ρ16 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 |
ρ17 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 |
ρ18 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 |
ρ19 | 1 | 1 | 1 | 1 | 1 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 |
ρ20 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 |
ρ21 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 |
ρ22 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 |
ρ23 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 |
ρ24 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ25 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ26 | 5 | 5ζ52 | 5ζ5 | 5ζ54 | 5ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 5 | 5ζ5 | 5ζ53 | 5ζ52 | 5ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 5 | 5ζ54 | 5ζ52 | 5ζ53 | 5ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 5 | 5ζ53 | 5ζ54 | 5ζ5 | 5ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)
(1 5 4 3 2)(6 10 9 8 7)(11 13 15 12 14)(16 19 17 20 18)(21 22 23 24 25)
(1 24 17 13 6)(2 23 19 11 7)(3 22 16 14 8)(4 21 18 12 9)(5 25 20 15 10)
G:=sub<Sym(25)| (6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,5,4,3,2)(6,10,9,8,7)(11,13,15,12,14)(16,19,17,20,18)(21,22,23,24,25), (1,24,17,13,6)(2,23,19,11,7)(3,22,16,14,8)(4,21,18,12,9)(5,25,20,15,10)>;
G:=Group( (6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,5,4,3,2)(6,10,9,8,7)(11,13,15,12,14)(16,19,17,20,18)(21,22,23,24,25), (1,24,17,13,6)(2,23,19,11,7)(3,22,16,14,8)(4,21,18,12,9)(5,25,20,15,10) );
G=PermutationGroup([[(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25)], [(1,5,4,3,2),(6,10,9,8,7),(11,13,15,12,14),(16,19,17,20,18),(21,22,23,24,25)], [(1,24,17,13,6),(2,23,19,11,7),(3,22,16,14,8),(4,21,18,12,9),(5,25,20,15,10)]])
G:=TransitiveGroup(25,14);
He5 is a maximal subgroup of
C52⋊C10 He5⋊C2 He5⋊C3
Matrix representation of He5 ►in GL5(𝔽11)
4 | 0 | 0 | 4 | 0 |
2 | 0 | 0 | 10 | 4 |
6 | 0 | 0 | 2 | 0 |
5 | 3 | 0 | 7 | 0 |
9 | 0 | 9 | 8 | 0 |
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
9 | 3 | 0 | 0 | 0 |
0 | 2 | 1 | 0 | 0 |
0 | 7 | 0 | 1 | 0 |
0 | 8 | 0 | 0 | 1 |
0 | 6 | 0 | 0 | 0 |
G:=sub<GL(5,GF(11))| [4,2,6,5,9,0,0,0,3,0,0,0,0,0,9,4,10,2,7,8,0,4,0,0,0],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[9,0,0,0,0,3,2,7,8,6,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
He5 in GAP, Magma, Sage, TeX
{\rm He}_5
% in TeX
G:=Group("He5");
// GroupNames label
G:=SmallGroup(125,3);
// by ID
G=gap.SmallGroup(125,3);
# by ID
G:=PCGroup([3,-5,5,-5,181]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^5=1,c*a*c^-1=a*b=b*a,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of He5 in TeX
Character table of He5 in TeX