Extensions 1→N→G→Q→1 with N=C14 and Q=C3×S3

Direct product G=N×Q with N=C14 and Q=C3×S3
dρLabelID
S3×C42842S3xC42252,42

Semidirect products G=N:Q with N=C14 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C14⋊(C3×S3) = C2×C3⋊F7φ: C3×S3/C3C6 ⊆ Aut C14426+C14:(C3xS3)252,30
C142(C3×S3) = C2×S3×C7⋊C3φ: C3×S3/S3C3 ⊆ Aut C14426C14:2(C3xS3)252,29
C143(C3×S3) = C6×D21φ: C3×S3/C32C2 ⊆ Aut C14842C14:3(C3xS3)252,43

Non-split extensions G=N.Q with N=C14 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C14.(C3×S3) = C6.F7φ: C3×S3/C3C6 ⊆ Aut C14846-C14.(C3xS3)252,18
C14.2(C3×S3) = Dic3×C7⋊C3φ: C3×S3/S3C3 ⊆ Aut C14846C14.2(C3xS3)252,17
C14.3(C3×S3) = C3×Dic21φ: C3×S3/C32C2 ⊆ Aut C14842C14.3(C3xS3)252,22
C14.4(C3×S3) = Dic3×C21central extension (φ=1)842C14.4(C3xS3)252,21

׿
×
𝔽