Copied to
clipboard

G = Dic3×C7⋊C3order 252 = 22·32·7

Direct product of Dic3 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: Dic3×C7⋊C3, C213C12, C42.5C6, (C7×Dic3)⋊C3, C72(C3×Dic3), C14.2(C3×S3), C3⋊(C4×C7⋊C3), C6.(C2×C7⋊C3), C2.(S3×C7⋊C3), (C3×C7⋊C3)⋊3C4, (C6×C7⋊C3).3C2, (C2×C7⋊C3).2S3, SmallGroup(252,17)

Series: Derived Chief Lower central Upper central

C1C21 — Dic3×C7⋊C3
C1C7C21C42C6×C7⋊C3 — Dic3×C7⋊C3
C21 — Dic3×C7⋊C3
C1C2

Generators and relations for Dic3×C7⋊C3
 G = < a,b,c,d | a6=c7=d3=1, b2=a3, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
14C3
3C4
7C6
14C6
7C32
2C7⋊C3
21C12
7C3×C6
3C28
2C2×C7⋊C3
7C3×Dic3
3C4×C7⋊C3

Character table of Dic3×C7⋊C3

 class 123A3B3C3D3E4A4B6A6B6C6D6E7A7B12A12B12C12D14A14B21A21B28A28B28C28D42A42B
 size 11277141433277141433212121213366999966
ρ1111111111111111111111111111111    trivial
ρ21111111-1-11111111-1-1-1-11111-1-1-1-111    linear of order 2
ρ3111ζ3ζ32ζ32ζ3111ζ3ζ32ζ32ζ311ζ3ζ32ζ3ζ321111111111    linear of order 3
ρ4111ζ3ζ32ζ32ζ3-1-11ζ3ζ32ζ32ζ311ζ65ζ6ζ65ζ61111-1-1-1-111    linear of order 6
ρ5111ζ32ζ3ζ3ζ32111ζ32ζ3ζ3ζ3211ζ32ζ3ζ32ζ31111111111    linear of order 3
ρ6111ζ32ζ3ζ3ζ32-1-11ζ32ζ3ζ3ζ3211ζ6ζ65ζ6ζ651111-1-1-1-111    linear of order 6
ρ71-111111i-i-1-1-1-1-111ii-i-i-1-111i-i-ii-1-1    linear of order 4
ρ81-111111-ii-1-1-1-1-111-i-iii-1-111-iii-i-1-1    linear of order 4
ρ91-11ζ32ζ3ζ3ζ32i-i-1ζ6ζ65ζ65ζ611ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3-1-111i-i-ii-1-1    linear of order 12
ρ101-11ζ3ζ32ζ32ζ3i-i-1ζ65ζ6ζ6ζ6511ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32-1-111i-i-ii-1-1    linear of order 12
ρ111-11ζ3ζ32ζ32ζ3-ii-1ζ65ζ6ζ6ζ6511ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32-1-111-iii-i-1-1    linear of order 12
ρ121-11ζ32ζ3ζ3ζ32-ii-1ζ6ζ65ζ65ζ611ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3-1-111-iii-i-1-1    linear of order 12
ρ1322-122-1-100-122-1-122000022-1-10000-1-1    orthogonal lifted from S3
ρ142-2-122-1-1001-2-211220000-2-2-1-1000011    symplectic lifted from Dic3, Schur index 2
ρ1522-1-1+-3-1--3ζ6ζ6500-1-1+-3-1--3ζ6ζ6522000022-1-10000-1-1    complex lifted from C3×S3
ρ162-2-1-1--3-1+-3ζ65ζ60011+-31--3ζ3ζ32220000-2-2-1-1000011    complex lifted from C3×Dic3
ρ1722-1-1--3-1+-3ζ65ζ600-1-1--3-1+-3ζ65ζ622000022-1-10000-1-1    complex lifted from C3×S3
ρ182-2-1-1+-3-1--3ζ6ζ650011--31+-3ζ32ζ3220000-2-2-1-1000011    complex lifted from C3×Dic3
ρ193330000-3-330000-1+-7/2-1--7/20000-1--7/2-1+-7/2-1--7/2-1+-7/21--7/21--7/21+-7/21+-7/2-1--7/2-1+-7/2    complex lifted from C2×C7⋊C3
ρ2033300003330000-1--7/2-1+-7/20000-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ213330000-3-330000-1--7/2-1+-7/20000-1+-7/2-1--7/2-1+-7/2-1--7/21+-7/21+-7/21--7/21--7/2-1+-7/2-1--7/2    complex lifted from C2×C7⋊C3
ρ2233300003330000-1+-7/2-1--7/20000-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ233-330000-3i3i-30000-1+-7/2-1--7/200001+-7/21--7/2-1--7/2-1+-7/2ζ43ζ7443ζ7243ζ7ζ4ζ744ζ724ζ7ζ4ζ764ζ754ζ73ζ43ζ7643ζ7543ζ731+-7/21--7/2    complex lifted from C4×C7⋊C3
ρ243-330000-3i3i-30000-1--7/2-1+-7/200001--7/21+-7/2-1+-7/2-1--7/2ζ43ζ7643ζ7543ζ73ζ4ζ764ζ754ζ73ζ4ζ744ζ724ζ7ζ43ζ7443ζ7243ζ71--7/21+-7/2    complex lifted from C4×C7⋊C3
ρ253-3300003i-3i-30000-1--7/2-1+-7/200001--7/21+-7/2-1+-7/2-1--7/2ζ4ζ764ζ754ζ73ζ43ζ7643ζ7543ζ73ζ43ζ7443ζ7243ζ7ζ4ζ744ζ724ζ71--7/21+-7/2    complex lifted from C4×C7⋊C3
ρ263-3300003i-3i-30000-1+-7/2-1--7/200001+-7/21--7/2-1--7/2-1+-7/2ζ4ζ744ζ724ζ7ζ43ζ7443ζ7243ζ7ζ43ζ7643ζ7543ζ73ζ4ζ764ζ754ζ731+-7/21--7/2    complex lifted from C4×C7⋊C3
ρ276-6-300000030000-1--7-1+-700001--71+-71--7/21+-7/20000-1+-7/2-1--7/2    complex faithful
ρ286-6-300000030000-1+-7-1--700001+-71--71+-7/21--7/20000-1--7/2-1+-7/2    complex faithful
ρ2966-3000000-30000-1--7-1+-70000-1+-7-1--71--7/21+-7/200001--7/21+-7/2    complex lifted from S3×C7⋊C3
ρ3066-3000000-30000-1+-7-1--70000-1--7-1+-71+-7/21--7/200001+-7/21--7/2    complex lifted from S3×C7⋊C3

Smallest permutation representation of Dic3×C7⋊C3
On 84 points
Generators in S84
(1 36 8 22 15 29)(2 37 9 23 16 30)(3 38 10 24 17 31)(4 39 11 25 18 32)(5 40 12 26 19 33)(6 41 13 27 20 34)(7 42 14 28 21 35)(43 71 57 64 50 78)(44 72 58 65 51 79)(45 73 59 66 52 80)(46 74 60 67 53 81)(47 75 61 68 54 82)(48 76 62 69 55 83)(49 77 63 70 56 84)
(1 64 22 43)(2 65 23 44)(3 66 24 45)(4 67 25 46)(5 68 26 47)(6 69 27 48)(7 70 28 49)(8 71 29 50)(9 72 30 51)(10 73 31 52)(11 74 32 53)(12 75 33 54)(13 76 34 55)(14 77 35 56)(15 78 36 57)(16 79 37 58)(17 80 38 59)(18 81 39 60)(19 82 40 61)(20 83 41 62)(21 84 42 63)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)
(1 8 15)(2 10 19)(3 12 16)(4 14 20)(5 9 17)(6 11 21)(7 13 18)(22 29 36)(23 31 40)(24 33 37)(25 35 41)(26 30 38)(27 32 42)(28 34 39)(43 50 57)(44 52 61)(45 54 58)(46 56 62)(47 51 59)(48 53 63)(49 55 60)(64 71 78)(65 73 82)(66 75 79)(67 77 83)(68 72 80)(69 74 84)(70 76 81)

G:=sub<Sym(84)| (1,36,8,22,15,29)(2,37,9,23,16,30)(3,38,10,24,17,31)(4,39,11,25,18,32)(5,40,12,26,19,33)(6,41,13,27,20,34)(7,42,14,28,21,35)(43,71,57,64,50,78)(44,72,58,65,51,79)(45,73,59,66,52,80)(46,74,60,67,53,81)(47,75,61,68,54,82)(48,76,62,69,55,83)(49,77,63,70,56,84), (1,64,22,43)(2,65,23,44)(3,66,24,45)(4,67,25,46)(5,68,26,47)(6,69,27,48)(7,70,28,49)(8,71,29,50)(9,72,30,51)(10,73,31,52)(11,74,32,53)(12,75,33,54)(13,76,34,55)(14,77,35,56)(15,78,36,57)(16,79,37,58)(17,80,38,59)(18,81,39,60)(19,82,40,61)(20,83,41,62)(21,84,42,63), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,50,57)(44,52,61)(45,54,58)(46,56,62)(47,51,59)(48,53,63)(49,55,60)(64,71,78)(65,73,82)(66,75,79)(67,77,83)(68,72,80)(69,74,84)(70,76,81)>;

G:=Group( (1,36,8,22,15,29)(2,37,9,23,16,30)(3,38,10,24,17,31)(4,39,11,25,18,32)(5,40,12,26,19,33)(6,41,13,27,20,34)(7,42,14,28,21,35)(43,71,57,64,50,78)(44,72,58,65,51,79)(45,73,59,66,52,80)(46,74,60,67,53,81)(47,75,61,68,54,82)(48,76,62,69,55,83)(49,77,63,70,56,84), (1,64,22,43)(2,65,23,44)(3,66,24,45)(4,67,25,46)(5,68,26,47)(6,69,27,48)(7,70,28,49)(8,71,29,50)(9,72,30,51)(10,73,31,52)(11,74,32,53)(12,75,33,54)(13,76,34,55)(14,77,35,56)(15,78,36,57)(16,79,37,58)(17,80,38,59)(18,81,39,60)(19,82,40,61)(20,83,41,62)(21,84,42,63), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,50,57)(44,52,61)(45,54,58)(46,56,62)(47,51,59)(48,53,63)(49,55,60)(64,71,78)(65,73,82)(66,75,79)(67,77,83)(68,72,80)(69,74,84)(70,76,81) );

G=PermutationGroup([[(1,36,8,22,15,29),(2,37,9,23,16,30),(3,38,10,24,17,31),(4,39,11,25,18,32),(5,40,12,26,19,33),(6,41,13,27,20,34),(7,42,14,28,21,35),(43,71,57,64,50,78),(44,72,58,65,51,79),(45,73,59,66,52,80),(46,74,60,67,53,81),(47,75,61,68,54,82),(48,76,62,69,55,83),(49,77,63,70,56,84)], [(1,64,22,43),(2,65,23,44),(3,66,24,45),(4,67,25,46),(5,68,26,47),(6,69,27,48),(7,70,28,49),(8,71,29,50),(9,72,30,51),(10,73,31,52),(11,74,32,53),(12,75,33,54),(13,76,34,55),(14,77,35,56),(15,78,36,57),(16,79,37,58),(17,80,38,59),(18,81,39,60),(19,82,40,61),(20,83,41,62),(21,84,42,63)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84)], [(1,8,15),(2,10,19),(3,12,16),(4,14,20),(5,9,17),(6,11,21),(7,13,18),(22,29,36),(23,31,40),(24,33,37),(25,35,41),(26,30,38),(27,32,42),(28,34,39),(43,50,57),(44,52,61),(45,54,58),(46,56,62),(47,51,59),(48,53,63),(49,55,60),(64,71,78),(65,73,82),(66,75,79),(67,77,83),(68,72,80),(69,74,84),(70,76,81)]])

Matrix representation of Dic3×C7⋊C3 in GL5(𝔽337)

1290000
12209000
00100
00010
00001
,
249312000
17588000
0033600
0003360
0000336
,
10000
01000
003361241
0001241
003361251
,
10000
01000
001251213
00100
0011212

G:=sub<GL(5,GF(337))| [129,12,0,0,0,0,209,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[249,175,0,0,0,312,88,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[1,0,0,0,0,0,1,0,0,0,0,0,336,0,336,0,0,124,124,125,0,0,1,1,1],[1,0,0,0,0,0,1,0,0,0,0,0,125,1,1,0,0,1,0,1,0,0,213,0,212] >;

Dic3×C7⋊C3 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_7\rtimes C_3
% in TeX

G:=Group("Dic3xC7:C3");
// GroupNames label

G:=SmallGroup(252,17);
// by ID

G=gap.SmallGroup(252,17);
# by ID

G:=PCGroup([5,-2,-3,-2,-3,-7,30,483,909]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^7=d^3=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of Dic3×C7⋊C3 in TeX
Character table of Dic3×C7⋊C3 in TeX

׿
×
𝔽