direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C2×S3×C7⋊C3, C42⋊3C6, C7⋊3(S3×C6), (S3×C14)⋊C3, (S3×C7)⋊2C6, C14⋊2(C3×S3), C21⋊4(C2×C6), C6⋊(C2×C7⋊C3), C3⋊(C22×C7⋊C3), (C6×C7⋊C3)⋊3C2, (C3×C7⋊C3)⋊4C22, SmallGroup(252,29)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C21 — C3×C7⋊C3 — S3×C7⋊C3 — C2×S3×C7⋊C3 |
C21 — C2×S3×C7⋊C3 |
Generators and relations for C2×S3×C7⋊C3
G = < a,b,c,d,e | a2=b3=c2=d7=e3=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >
Character table of C2×S3×C7⋊C3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 7A | 7B | 14A | 14B | 14C | 14D | 14E | 14F | 21A | 21B | 42A | 42B | |
size | 1 | 1 | 3 | 3 | 2 | 7 | 7 | 14 | 14 | 2 | 7 | 7 | 14 | 14 | 21 | 21 | 21 | 21 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | ζ3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | ζ65 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ8 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ10 | 1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | ζ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ11 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | ζ32 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ12 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ13 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | -2 | 0 | 0 | -1 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | 1 | 1-√-3 | 1+√-3 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | complex lifted from S3×C6 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ17 | 2 | 2 | 0 | 0 | -1 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ18 | 2 | -2 | 0 | 0 | -1 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | 1 | 1+√-3 | 1-√-3 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | complex lifted from S3×C6 |
ρ19 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ20 | 3 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ21 | 3 | -3 | -3 | 3 | 3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | 1-√-7/2 | -1-√-7/2 | 1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ22 | 3 | -3 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | -1+√-7/2 | 1+√-7/2 | -1-√-7/2 | 1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ23 | 3 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ24 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ25 | 3 | -3 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | -1-√-7/2 | 1-√-7/2 | -1+√-7/2 | 1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ26 | 3 | -3 | -3 | 3 | 3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | 1+√-7/2 | -1+√-7/2 | 1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ27 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | -1+√-7 | -1-√-7 | 0 | 0 | 0 | 0 | 1-√-7/2 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from S3×C7⋊C3 |
ρ28 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 1+√-7 | 1-√-7 | 0 | 0 | 0 | 0 | 1+√-7/2 | 1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex faithful |
ρ29 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | -1-√-7 | -1+√-7 | 0 | 0 | 0 | 0 | 1+√-7/2 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from S3×C7⋊C3 |
ρ30 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 1-√-7 | 1+√-7 | 0 | 0 | 0 | 0 | 1-√-7/2 | 1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex faithful |
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)
(1 8 15)(2 9 16)(3 10 17)(4 11 18)(5 12 19)(6 13 20)(7 14 21)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)
(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)
G:=sub<Sym(42)| (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)>;
G:=Group( (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42)], [(1,8,15),(2,9,16),(3,10,17),(4,11,18),(5,12,19),(6,13,20),(7,14,21),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42)], [(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41)]])
Matrix representation of C2×S3×C7⋊C3 ►in GL5(𝔽43)
42 | 0 | 0 | 0 | 0 |
0 | 42 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 6 | 0 | 0 | 0 |
21 | 41 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
42 | 37 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 24 | 25 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
6 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 18 | 42 | 42 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(43))| [42,0,0,0,0,0,42,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,21,0,0,0,6,41,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[42,0,0,0,0,37,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,24,1,0,0,0,25,0,1,0,0,1,0,0],[6,0,0,0,0,0,6,0,0,0,0,0,1,18,0,0,0,0,42,1,0,0,0,42,0] >;
C2×S3×C7⋊C3 in GAP, Magma, Sage, TeX
C_2\times S_3\times C_7\rtimes C_3
% in TeX
G:=Group("C2xS3xC7:C3");
// GroupNames label
G:=SmallGroup(252,29);
// by ID
G=gap.SmallGroup(252,29);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-7,483,464]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^7=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations
Export
Subgroup lattice of C2×S3×C7⋊C3 in TeX
Character table of C2×S3×C7⋊C3 in TeX