Copied to
clipboard

G = C133F5order 260 = 22·5·13

The semidirect product of C13 and F5 acting via F5/D5=C2

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C654C4, C5⋊Dic13, C133F5, D5.D13, (D5×C13).1C2, SmallGroup(260,8)

Series: Derived Chief Lower central Upper central

C1C65 — C133F5
C1C13C65D5×C13 — C133F5
C65 — C133F5
C1

Generators and relations for C133F5
 G = < a,b,c | a13=b5=c4=1, ab=ba, cac-1=a-1, cbc-1=b3 >

5C2
65C4
5C26
13F5
5Dic13

Character table of C133F5

 class 124A4B513A13B13C13D13E13F26A26B26C26D26E26F65A65B65C65D65E65F65G65H65I65J65K65L
 size 1565654222222101010101010444444444444
ρ111111111111111111111111111111    trivial
ρ211-1-11111111111111111111111111    linear of order 2
ρ31-1-ii1111111-1-1-1-1-1-1111111111111    linear of order 4
ρ41-1i-i1111111-1-1-1-1-1-1111111111111    linear of order 4
ρ522002ζ131213ζ138135ζ1311132ζ1310133ζ137136ζ139134ζ138135ζ1310133ζ137136ζ139134ζ131213ζ1311132ζ131213ζ137136ζ1310133ζ1310133ζ1311132ζ138135ζ138135ζ1311132ζ131213ζ139134ζ137136ζ139134    orthogonal lifted from D13
ρ622002ζ139134ζ137136ζ138135ζ131213ζ1311132ζ1310133ζ137136ζ131213ζ1311132ζ1310133ζ139134ζ138135ζ139134ζ1311132ζ131213ζ131213ζ138135ζ137136ζ137136ζ138135ζ139134ζ1310133ζ1311132ζ1310133    orthogonal lifted from D13
ρ722002ζ1311132ζ1310133ζ139134ζ137136ζ131213ζ138135ζ1310133ζ137136ζ131213ζ138135ζ1311132ζ139134ζ1311132ζ131213ζ137136ζ137136ζ139134ζ1310133ζ1310133ζ139134ζ1311132ζ138135ζ131213ζ138135    orthogonal lifted from D13
ρ822002ζ137136ζ139134ζ131213ζ138135ζ1310133ζ1311132ζ139134ζ138135ζ1310133ζ1311132ζ137136ζ131213ζ137136ζ1310133ζ138135ζ138135ζ131213ζ139134ζ139134ζ131213ζ137136ζ1311132ζ1310133ζ1311132    orthogonal lifted from D13
ρ922002ζ1310133ζ1311132ζ137136ζ139134ζ138135ζ131213ζ1311132ζ139134ζ138135ζ131213ζ1310133ζ137136ζ1310133ζ138135ζ139134ζ139134ζ137136ζ1311132ζ1311132ζ137136ζ1310133ζ131213ζ138135ζ131213    orthogonal lifted from D13
ρ1022002ζ138135ζ131213ζ1310133ζ1311132ζ139134ζ137136ζ131213ζ1311132ζ139134ζ137136ζ138135ζ1310133ζ138135ζ139134ζ1311132ζ1311132ζ1310133ζ131213ζ131213ζ1310133ζ138135ζ137136ζ139134ζ137136    orthogonal lifted from D13
ρ112-2002ζ139134ζ137136ζ138135ζ131213ζ1311132ζ131013313713613121313111321310133139134138135ζ139134ζ1311132ζ131213ζ131213ζ138135ζ137136ζ137136ζ138135ζ139134ζ1310133ζ1311132ζ1310133    symplectic lifted from Dic13, Schur index 2
ρ122-2002ζ137136ζ139134ζ131213ζ138135ζ1310133ζ131113213913413813513101331311132137136131213ζ137136ζ1310133ζ138135ζ138135ζ131213ζ139134ζ139134ζ131213ζ137136ζ1311132ζ1310133ζ1311132    symplectic lifted from Dic13, Schur index 2
ρ132-2002ζ138135ζ131213ζ1310133ζ1311132ζ139134ζ13713613121313111321391341371361381351310133ζ138135ζ139134ζ1311132ζ1311132ζ1310133ζ131213ζ131213ζ1310133ζ138135ζ137136ζ139134ζ137136    symplectic lifted from Dic13, Schur index 2
ρ142-2002ζ1310133ζ1311132ζ137136ζ139134ζ138135ζ13121313111321391341381351312131310133137136ζ1310133ζ138135ζ139134ζ139134ζ137136ζ1311132ζ1311132ζ137136ζ1310133ζ131213ζ138135ζ131213    symplectic lifted from Dic13, Schur index 2
ρ152-2002ζ1311132ζ1310133ζ139134ζ137136ζ131213ζ13813513101331371361312131381351311132139134ζ1311132ζ131213ζ137136ζ137136ζ139134ζ1310133ζ1310133ζ139134ζ1311132ζ138135ζ131213ζ138135    symplectic lifted from Dic13, Schur index 2
ρ162-2002ζ131213ζ138135ζ1311132ζ1310133ζ137136ζ13913413813513101331371361391341312131311132ζ131213ζ137136ζ1310133ζ1310133ζ1311132ζ138135ζ138135ζ1311132ζ131213ζ139134ζ137136ζ139134    symplectic lifted from Dic13, Schur index 2
ρ174000-1444444000000-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ184000-11312+2ζ13138+2ζ1351311+2ζ1321310+2ζ133137+2ζ136139+2ζ13400000054ζ131254ζ135ζ13125ζ131312ζ53ζ13753ζ13652ζ13752ζ13613654ζ131054ζ1335ζ13105ζ1331310ζ54ζ131054ζ1335ζ13105ζ133133ζ54ζ131154ζ1325ζ13115ζ13213253ζ13853ζ13552ζ13852ζ135138ζ53ζ13853ζ13552ζ13852ζ135135ζ53ζ131153ζ13252ζ131152ζ13213253ζ131253ζ1352ζ131252ζ131312ζ54ζ13954ζ1345ζ1395ζ134134ζ54ζ13754ζ1365ζ1375ζ13613654ζ13954ζ1345ζ1395ζ134139    complex faithful
ρ194000-1137+2ζ136139+2ζ1341312+2ζ13138+2ζ1351310+2ζ1331311+2ζ132000000ζ53ζ13753ζ13652ζ13752ζ136136ζ54ζ131054ζ1335ζ13105ζ133133ζ53ζ13853ζ13552ζ13852ζ13513553ζ13853ζ13552ζ13852ζ13513854ζ131254ζ135ζ13125ζ131312ζ54ζ13954ζ1345ζ1395ζ13413454ζ13954ζ1345ζ1395ζ13413953ζ131253ζ1352ζ131252ζ131312ζ54ζ13754ζ1365ζ1375ζ136136ζ53ζ131153ζ13252ζ131152ζ13213254ζ131054ζ1335ζ13105ζ1331310ζ54ζ131154ζ1325ζ13115ζ132132    complex faithful
ρ204000-1139+2ζ134137+2ζ136138+2ζ1351312+2ζ131311+2ζ1321310+2ζ133000000ζ54ζ13954ζ1345ζ1395ζ134134ζ53ζ131153ζ13252ζ131152ζ13213254ζ131254ζ135ζ13125ζ13131253ζ131253ζ1352ζ131252ζ13131253ζ13853ζ13552ζ13852ζ135138ζ54ζ13754ζ1365ζ1375ζ136136ζ53ζ13753ζ13652ζ13752ζ136136ζ53ζ13853ζ13552ζ13852ζ13513554ζ13954ζ1345ζ1395ζ13413954ζ131054ζ1335ζ13105ζ1331310ζ54ζ131154ζ1325ζ13115ζ132132ζ54ζ131054ζ1335ζ13105ζ133133    complex faithful
ρ214000-1137+2ζ136139+2ζ1341312+2ζ13138+2ζ1351310+2ζ1331311+2ζ132000000ζ54ζ13754ζ1365ζ1375ζ13613654ζ131054ζ1335ζ13105ζ133131053ζ13853ζ13552ζ13852ζ135138ζ53ζ13853ζ13552ζ13852ζ13513553ζ131253ζ1352ζ131252ζ13131254ζ13954ζ1345ζ1395ζ134139ζ54ζ13954ζ1345ζ1395ζ13413454ζ131254ζ135ζ13125ζ131312ζ53ζ13753ζ13652ζ13752ζ136136ζ54ζ131154ζ1325ζ13115ζ132132ζ54ζ131054ζ1335ζ13105ζ133133ζ53ζ131153ζ13252ζ131152ζ132132    complex faithful
ρ224000-11311+2ζ1321310+2ζ133139+2ζ134137+2ζ1361312+2ζ13138+2ζ135000000ζ53ζ131153ζ13252ζ131152ζ13213253ζ131253ζ1352ζ131252ζ131312ζ53ζ13753ζ13652ζ13752ζ136136ζ54ζ13754ζ1365ζ1375ζ136136ζ54ζ13954ζ1345ζ1395ζ13413454ζ131054ζ1335ζ13105ζ1331310ζ54ζ131054ζ1335ζ13105ζ13313354ζ13954ζ1345ζ1395ζ134139ζ54ζ131154ζ1325ζ13115ζ132132ζ53ζ13853ζ13552ζ13852ζ13513554ζ131254ζ135ζ13125ζ13131253ζ13853ζ13552ζ13852ζ135138    complex faithful
ρ234000-11310+2ζ1331311+2ζ132137+2ζ136139+2ζ134138+2ζ1351312+2ζ1300000054ζ131054ζ1335ζ13105ζ1331310ζ53ζ13853ζ13552ζ13852ζ135135ζ54ζ13954ζ1345ζ1395ζ13413454ζ13954ζ1345ζ1395ζ134139ζ54ζ13754ζ1365ζ1375ζ136136ζ54ζ131154ζ1325ζ13115ζ132132ζ53ζ131153ζ13252ζ131152ζ132132ζ53ζ13753ζ13652ζ13752ζ136136ζ54ζ131054ζ1335ζ13105ζ13313354ζ131254ζ135ζ13125ζ13131253ζ13853ζ13552ζ13852ζ13513853ζ131253ζ1352ζ131252ζ131312    complex faithful
ρ244000-11311+2ζ1321310+2ζ133139+2ζ134137+2ζ1361312+2ζ13138+2ζ135000000ζ54ζ131154ζ1325ζ13115ζ13213254ζ131254ζ135ζ13125ζ131312ζ54ζ13754ζ1365ζ1375ζ136136ζ53ζ13753ζ13652ζ13752ζ13613654ζ13954ζ1345ζ1395ζ134139ζ54ζ131054ζ1335ζ13105ζ13313354ζ131054ζ1335ζ13105ζ1331310ζ54ζ13954ζ1345ζ1395ζ134134ζ53ζ131153ζ13252ζ131152ζ13213253ζ13853ζ13552ζ13852ζ13513853ζ131253ζ1352ζ131252ζ131312ζ53ζ13853ζ13552ζ13852ζ135135    complex faithful
ρ254000-11312+2ζ13138+2ζ1351311+2ζ1321310+2ζ133137+2ζ136139+2ζ13400000053ζ131253ζ1352ζ131252ζ131312ζ54ζ13754ζ1365ζ1375ζ136136ζ54ζ131054ζ1335ζ13105ζ13313354ζ131054ζ1335ζ13105ζ1331310ζ53ζ131153ζ13252ζ131152ζ132132ζ53ζ13853ζ13552ζ13852ζ13513553ζ13853ζ13552ζ13852ζ135138ζ54ζ131154ζ1325ζ13115ζ13213254ζ131254ζ135ζ13125ζ13131254ζ13954ζ1345ζ1395ζ134139ζ53ζ13753ζ13652ζ13752ζ136136ζ54ζ13954ζ1345ζ1395ζ134134    complex faithful
ρ264000-1138+2ζ1351312+2ζ131310+2ζ1331311+2ζ132139+2ζ134137+2ζ13600000053ζ13853ζ13552ζ13852ζ135138ζ54ζ13954ζ1345ζ1395ζ134134ζ54ζ131154ζ1325ζ13115ζ132132ζ53ζ131153ζ13252ζ131152ζ132132ζ54ζ131054ζ1335ζ13105ζ13313353ζ131253ζ1352ζ131252ζ13131254ζ131254ζ135ζ13125ζ13131254ζ131054ζ1335ζ13105ζ1331310ζ53ζ13853ζ13552ζ13852ζ135135ζ54ζ13754ζ1365ζ1375ζ13613654ζ13954ζ1345ζ1395ζ134139ζ53ζ13753ζ13652ζ13752ζ136136    complex faithful
ρ274000-1139+2ζ134137+2ζ136138+2ζ1351312+2ζ131311+2ζ1321310+2ζ13300000054ζ13954ζ1345ζ1395ζ134139ζ54ζ131154ζ1325ζ13115ζ13213253ζ131253ζ1352ζ131252ζ13131254ζ131254ζ135ζ13125ζ131312ζ53ζ13853ζ13552ζ13852ζ135135ζ53ζ13753ζ13652ζ13752ζ136136ζ54ζ13754ζ1365ζ1375ζ13613653ζ13853ζ13552ζ13852ζ135138ζ54ζ13954ζ1345ζ1395ζ134134ζ54ζ131054ζ1335ζ13105ζ133133ζ53ζ131153ζ13252ζ131152ζ13213254ζ131054ζ1335ζ13105ζ1331310    complex faithful
ρ284000-11310+2ζ1331311+2ζ132137+2ζ136139+2ζ134138+2ζ1351312+2ζ13000000ζ54ζ131054ζ1335ζ13105ζ13313353ζ13853ζ13552ζ13852ζ13513854ζ13954ζ1345ζ1395ζ134139ζ54ζ13954ζ1345ζ1395ζ134134ζ53ζ13753ζ13652ζ13752ζ136136ζ53ζ131153ζ13252ζ131152ζ132132ζ54ζ131154ζ1325ζ13115ζ132132ζ54ζ13754ζ1365ζ1375ζ13613654ζ131054ζ1335ζ13105ζ133131053ζ131253ζ1352ζ131252ζ131312ζ53ζ13853ζ13552ζ13852ζ13513554ζ131254ζ135ζ13125ζ131312    complex faithful
ρ294000-1138+2ζ1351312+2ζ131310+2ζ1331311+2ζ132139+2ζ134137+2ζ136000000ζ53ζ13853ζ13552ζ13852ζ13513554ζ13954ζ1345ζ1395ζ134139ζ53ζ131153ζ13252ζ131152ζ132132ζ54ζ131154ζ1325ζ13115ζ13213254ζ131054ζ1335ζ13105ζ133131054ζ131254ζ135ζ13125ζ13131253ζ131253ζ1352ζ131252ζ131312ζ54ζ131054ζ1335ζ13105ζ13313353ζ13853ζ13552ζ13852ζ135138ζ53ζ13753ζ13652ζ13752ζ136136ζ54ζ13954ζ1345ζ1395ζ134134ζ54ζ13754ζ1365ζ1375ζ136136    complex faithful

Smallest permutation representation of C133F5
On 65 points
Generators in S65
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)
(1 16 38 52 57)(2 17 39 40 58)(3 18 27 41 59)(4 19 28 42 60)(5 20 29 43 61)(6 21 30 44 62)(7 22 31 45 63)(8 23 32 46 64)(9 24 33 47 65)(10 25 34 48 53)(11 26 35 49 54)(12 14 36 50 55)(13 15 37 51 56)
(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(14 27 55 41)(15 39 56 40)(16 38 57 52)(17 37 58 51)(18 36 59 50)(19 35 60 49)(20 34 61 48)(21 33 62 47)(22 32 63 46)(23 31 64 45)(24 30 65 44)(25 29 53 43)(26 28 54 42)

G:=sub<Sym(65)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (1,16,38,52,57)(2,17,39,40,58)(3,18,27,41,59)(4,19,28,42,60)(5,20,29,43,61)(6,21,30,44,62)(7,22,31,45,63)(8,23,32,46,64)(9,24,33,47,65)(10,25,34,48,53)(11,26,35,49,54)(12,14,36,50,55)(13,15,37,51,56), (2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(14,27,55,41)(15,39,56,40)(16,38,57,52)(17,37,58,51)(18,36,59,50)(19,35,60,49)(20,34,61,48)(21,33,62,47)(22,32,63,46)(23,31,64,45)(24,30,65,44)(25,29,53,43)(26,28,54,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (1,16,38,52,57)(2,17,39,40,58)(3,18,27,41,59)(4,19,28,42,60)(5,20,29,43,61)(6,21,30,44,62)(7,22,31,45,63)(8,23,32,46,64)(9,24,33,47,65)(10,25,34,48,53)(11,26,35,49,54)(12,14,36,50,55)(13,15,37,51,56), (2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(14,27,55,41)(15,39,56,40)(16,38,57,52)(17,37,58,51)(18,36,59,50)(19,35,60,49)(20,34,61,48)(21,33,62,47)(22,32,63,46)(23,31,64,45)(24,30,65,44)(25,29,53,43)(26,28,54,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65)], [(1,16,38,52,57),(2,17,39,40,58),(3,18,27,41,59),(4,19,28,42,60),(5,20,29,43,61),(6,21,30,44,62),(7,22,31,45,63),(8,23,32,46,64),(9,24,33,47,65),(10,25,34,48,53),(11,26,35,49,54),(12,14,36,50,55),(13,15,37,51,56)], [(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(14,27,55,41),(15,39,56,40),(16,38,57,52),(17,37,58,51),(18,36,59,50),(19,35,60,49),(20,34,61,48),(21,33,62,47),(22,32,63,46),(23,31,64,45),(24,30,65,44),(25,29,53,43),(26,28,54,42)]])

Matrix representation of C133F5 in GL4(𝔽521) generated by

0100
520700
0001
005207
,
1721745200
3473480520
1000
0100
,
1000
752000
349347349347
185172185172
G:=sub<GL(4,GF(521))| [0,520,0,0,1,7,0,0,0,0,0,520,0,0,1,7],[172,347,1,0,174,348,0,1,520,0,0,0,0,520,0,0],[1,7,349,185,0,520,347,172,0,0,349,185,0,0,347,172] >;

C133F5 in GAP, Magma, Sage, TeX

C_{13}\rtimes_3F_5
% in TeX

G:=Group("C13:3F5");
// GroupNames label

G:=SmallGroup(260,8);
// by ID

G=gap.SmallGroup(260,8);
# by ID

G:=PCGroup([4,-2,-2,-5,-13,8,146,102,3843]);
// Polycyclic

G:=Group<a,b,c|a^13=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C133F5 in TeX
Character table of C133F5 in TeX

׿
×
𝔽