Copied to
clipboard

G = C13⋊F5order 260 = 22·5·13

1st semidirect product of C13 and F5 acting via F5/C5=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C651C4, C131F5, D65.1C2, C51(C13⋊C4), SmallGroup(260,9)

Series: Derived Chief Lower central Upper central

C1C65 — C13⋊F5
C1C13C65D65 — C13⋊F5
C65 — C13⋊F5
C1

Generators and relations for C13⋊F5
 G = < a,b,c | a13=b5=c4=1, ab=ba, cac-1=a5, cbc-1=b3 >

65C2
65C4
13D5
5D13
13F5
5C13⋊C4

Character table of C13⋊F5

 class 124A4B513A13B13C65A65B65C65D65E65F65G65H65I65J65K65L
 size 16565654444444444444444
ρ111111111111111111111    trivial
ρ211-1-11111111111111111    linear of order 2
ρ31-1i-i1111111111111111    linear of order 4
ρ41-1-ii1111111111111111    linear of order 4
ρ54000-1444-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ640004ζ131213813513ζ139137136134ζ13111310133132ζ131213813513ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ131213813513ζ139137136134ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ139137136134    orthogonal lifted from C13⋊C4
ρ740004ζ139137136134ζ13111310133132ζ131213813513ζ139137136134ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ139137136134ζ13111310133132ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ13111310133132    orthogonal lifted from C13⋊C4
ρ840004ζ13111310133132ζ131213813513ζ139137136134ζ13111310133132ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ13111310133132ζ131213813513ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ131213813513    orthogonal lifted from C13⋊C4
ρ94000-1ζ131213813513ζ139137136134ζ1311131013313254ζ13854ζ1352ζ13852ζ1355ζ13125ζ138138ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ132133ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ1313554ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ13213253ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ134136ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ13613654ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ132132ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ13413454ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137    orthogonal faithful
ρ104000-1ζ131213813513ζ139137136134ζ1311131013313254ζ13854ζ13553ζ13853ζ1352ζ131252ζ13813854ζ131154ζ13352ζ131152ζ1325ζ13115ζ1310131154ζ13854ζ1352ζ13852ζ1355ζ13125ζ13813853ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ132132ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ13135ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ13613654ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ132132ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ132133ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ134136ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134    orthogonal faithful
ρ114000-1ζ139137136134ζ13111310133132ζ131213813513ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ134136ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ13135ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ13613654ζ13854ζ13553ζ13853ζ1352ζ131252ζ13813854ζ13754ζ13453ζ13753ζ1365ζ1395ζ13713754ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ13213254ζ13854ζ1352ζ13852ζ1355ζ13125ζ13813853ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ132133ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ132132    orthogonal faithful
ρ124000-1ζ13111310133132ζ131213813513ζ139137136134ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ132132ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ136136ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ132132ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ132133ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ13413454ζ131154ζ13352ζ131152ζ1325ζ13115ζ1310131153ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ1313554ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ13413654ζ13854ζ13553ζ13853ζ1352ζ131252ζ13813854ζ13854ζ1352ζ13852ζ1355ζ13125ζ138138    orthogonal faithful
ρ134000-1ζ13111310133132ζ131213813513ζ139137136134ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ132132ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ13413654ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ13213254ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ13213354ζ13854ζ13553ζ13853ζ1352ζ131252ζ13813853ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ136136ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ13413454ζ13854ζ1352ζ13852ζ1355ζ13125ζ138138ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ13135    orthogonal faithful
ρ144000-1ζ139137136134ζ13111310133132ζ13121381351354ζ13754ζ13453ζ13753ζ1365ζ1395ζ13713754ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ136136ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ13135ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ134136ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ132132ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ13213353ζ131253ζ13552ζ131252ζ1385ζ13125ζ13131254ζ13854ζ1352ζ13852ζ1355ζ13125ζ138138ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ13213254ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311    orthogonal faithful
ρ154000-1ζ131213813513ζ139137136134ζ1311131013313253ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ13213254ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ13135ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ13213354ζ13854ζ1352ζ13852ζ1355ζ13125ζ13813854ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ13213254ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ136136ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ134136    orthogonal faithful
ρ164000-1ζ131213813513ζ139137136134ζ13111310133132ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ13135ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ13213253ζ131253ζ13552ζ131252ζ1385ζ13125ζ13131254ζ13854ζ1352ζ13852ζ1355ζ13125ζ13813854ζ131154ζ13352ζ131152ζ1325ζ13115ζ1310131154ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ134136ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ132133ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ13213254ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ136136    orthogonal faithful
ρ174000-1ζ139137136134ζ13111310133132ζ131213813513ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ13413453ζ131253ζ13552ζ131252ζ1385ζ13125ζ13131254ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ13413654ζ13854ζ1352ζ13852ζ1355ζ13125ζ138138ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ136136ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ13213354ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ1313554ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ132132ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ132132    orthogonal faithful
ρ184000-1ζ139137136134ζ13111310133132ζ131213813513ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ13613654ζ13854ζ1352ζ13852ζ1355ζ13125ζ138138ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ13413654ζ13754ζ13453ζ13753ζ1365ζ1395ζ13713753ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ132132ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ13213254ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ1313554ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ132133    orthogonal faithful
ρ194000-1ζ13111310133132ζ131213813513ζ13913713613454ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ132133ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ132132ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ136136ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ13213254ζ13854ζ1352ζ13852ζ1355ζ13125ζ13813854ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ13413654ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ1313553ζ131253ζ13552ζ131252ζ1385ζ13125ζ131312    orthogonal faithful
ρ204000-1ζ13111310133132ζ131213813513ζ139137136134ζ54ζ131154ζ13353ζ131053ζ1335ζ1335ζ13213354ζ13754ζ13453ζ13753ζ1365ζ1395ζ137137ζ54ζ131054ζ13252ζ131152ζ1325ζ1335ζ13213254ζ131154ζ13352ζ131152ζ1325ζ13115ζ13101311ζ54ζ13954ζ13653ζ13753ζ1365ζ1365ζ134136ζ53ζ13353ζ13252ζ131052ζ1325ζ13115ζ132132ζ54ζ13854ζ13553ζ131253ζ13552ζ13552ζ1313554ζ13854ζ1352ζ13852ζ1355ζ13125ζ138138ζ54ζ13754ζ13452ζ13952ζ1345ζ1365ζ134134ζ53ζ13953ζ13652ζ13652ζ1345ζ1375ζ13613653ζ131253ζ13552ζ131252ζ1385ζ13125ζ13131254ζ13854ζ13553ζ13853ζ1352ζ131252ζ138138    orthogonal faithful

Smallest permutation representation of C13⋊F5
On 65 points
Generators in S65
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)
(1 15 37 52 62)(2 16 38 40 63)(3 17 39 41 64)(4 18 27 42 65)(5 19 28 43 53)(6 20 29 44 54)(7 21 30 45 55)(8 22 31 46 56)(9 23 32 47 57)(10 24 33 48 58)(11 25 34 49 59)(12 26 35 50 60)(13 14 36 51 61)
(2 9 13 6)(3 4 12 11)(5 7 10 8)(14 29 63 47)(15 37 62 52)(16 32 61 44)(17 27 60 49)(18 35 59 41)(19 30 58 46)(20 38 57 51)(21 33 56 43)(22 28 55 48)(23 36 54 40)(24 31 53 45)(25 39 65 50)(26 34 64 42)

G:=sub<Sym(65)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (1,15,37,52,62)(2,16,38,40,63)(3,17,39,41,64)(4,18,27,42,65)(5,19,28,43,53)(6,20,29,44,54)(7,21,30,45,55)(8,22,31,46,56)(9,23,32,47,57)(10,24,33,48,58)(11,25,34,49,59)(12,26,35,50,60)(13,14,36,51,61), (2,9,13,6)(3,4,12,11)(5,7,10,8)(14,29,63,47)(15,37,62,52)(16,32,61,44)(17,27,60,49)(18,35,59,41)(19,30,58,46)(20,38,57,51)(21,33,56,43)(22,28,55,48)(23,36,54,40)(24,31,53,45)(25,39,65,50)(26,34,64,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (1,15,37,52,62)(2,16,38,40,63)(3,17,39,41,64)(4,18,27,42,65)(5,19,28,43,53)(6,20,29,44,54)(7,21,30,45,55)(8,22,31,46,56)(9,23,32,47,57)(10,24,33,48,58)(11,25,34,49,59)(12,26,35,50,60)(13,14,36,51,61), (2,9,13,6)(3,4,12,11)(5,7,10,8)(14,29,63,47)(15,37,62,52)(16,32,61,44)(17,27,60,49)(18,35,59,41)(19,30,58,46)(20,38,57,51)(21,33,56,43)(22,28,55,48)(23,36,54,40)(24,31,53,45)(25,39,65,50)(26,34,64,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65)], [(1,15,37,52,62),(2,16,38,40,63),(3,17,39,41,64),(4,18,27,42,65),(5,19,28,43,53),(6,20,29,44,54),(7,21,30,45,55),(8,22,31,46,56),(9,23,32,47,57),(10,24,33,48,58),(11,25,34,49,59),(12,26,35,50,60),(13,14,36,51,61)], [(2,9,13,6),(3,4,12,11),(5,7,10,8),(14,29,63,47),(15,37,62,52),(16,32,61,44),(17,27,60,49),(18,35,59,41),(19,30,58,46),(20,38,57,51),(21,33,56,43),(22,28,55,48),(23,36,54,40),(24,31,53,45),(25,39,65,50),(26,34,64,42)]])

Matrix representation of C13⋊F5 in GL4(𝔽521) generated by

0100
0010
0001
520126150126
,
261177455320
201464245137
384270174314
207352480142
,
1000
395245270396
150251275125
0010
G:=sub<GL(4,GF(521))| [0,0,0,520,1,0,0,126,0,1,0,150,0,0,1,126],[261,201,384,207,177,464,270,352,455,245,174,480,320,137,314,142],[1,395,150,0,0,245,251,0,0,270,275,1,0,396,125,0] >;

C13⋊F5 in GAP, Magma, Sage, TeX

C_{13}\rtimes F_5
% in TeX

G:=Group("C13:F5");
// GroupNames label

G:=SmallGroup(260,9);
// by ID

G=gap.SmallGroup(260,9);
# by ID

G:=PCGroup([4,-2,-2,-5,-13,8,98,102,2563,1927]);
// Polycyclic

G:=Group<a,b,c|a^13=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^5,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C13⋊F5 in TeX
Character table of C13⋊F5 in TeX

׿
×
𝔽