Copied to
clipboard

G = C43⋊C6order 258 = 2·3·43

The semidirect product of C43 and C6 acting faithfully

metacyclic, supersoluble, monomial, Z-group

Aliases: C43⋊C6, D43⋊C3, C43⋊C3⋊C2, SmallGroup(258,1)

Series: Derived Chief Lower central Upper central

C1C43 — C43⋊C6
C1C43C43⋊C3 — C43⋊C6
C43 — C43⋊C6
C1

Generators and relations for C43⋊C6
 G = < a,b | a43=b6=1, bab-1=a7 >

43C2
43C3
43C6

Character table of C43⋊C6

 class 123A3B6A6B43A43B43C43D43E43F43G
 size 143434343436666666
ρ11111111111111    trivial
ρ21-111-1-11111111    linear of order 2
ρ311ζ32ζ3ζ32ζ31111111    linear of order 3
ρ411ζ3ζ32ζ3ζ321111111    linear of order 3
ρ51-1ζ3ζ32ζ65ζ61111111    linear of order 6
ρ61-1ζ32ζ3ζ6ζ651111111    linear of order 6
ρ7600000ζ43344332432343204311439ζ433343274326431743164310ζ43424337433643743643ζ43414331432943144312432ζ43404325432243214318433ζ43394328432443194315434ζ4338433543304313438435    orthogonal faithful
ρ8600000ζ43404325432243214318433ζ43344332432343204311439ζ43414331432943144312432ζ43394328432443194315434ζ43424337433643743643ζ4338433543304313438435ζ433343274326431743164310    orthogonal faithful
ρ9600000ζ4338433543304313438435ζ43394328432443194315434ζ43344332432343204311439ζ43404325432243214318433ζ433343274326431743164310ζ43424337433643743643ζ43414331432943144312432    orthogonal faithful
ρ10600000ζ433343274326431743164310ζ4338433543304313438435ζ43404325432243214318433ζ43424337433643743643ζ43344332432343204311439ζ43414331432943144312432ζ43394328432443194315434    orthogonal faithful
ρ11600000ζ43414331432943144312432ζ43424337433643743643ζ4338433543304313438435ζ433343274326431743164310ζ43394328432443194315434ζ43344332432343204311439ζ43404325432243214318433    orthogonal faithful
ρ12600000ζ43424337433643743643ζ43404325432243214318433ζ43394328432443194315434ζ4338433543304313438435ζ43414331432943144312432ζ433343274326431743164310ζ43344332432343204311439    orthogonal faithful
ρ13600000ζ43394328432443194315434ζ43414331432943144312432ζ433343274326431743164310ζ43344332432343204311439ζ4338433543304313438435ζ43404325432243214318433ζ43424337433643743643    orthogonal faithful

Smallest permutation representation of C43⋊C6
On 43 points: primitive
Generators in S43
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43)
(2 38 37 43 7 8)(3 32 30 42 13 15)(4 26 23 41 19 22)(5 20 16 40 25 29)(6 14 9 39 31 36)(10 33 24 35 12 21)(11 27 17 34 18 28)

G:=sub<Sym(43)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43), (2,38,37,43,7,8)(3,32,30,42,13,15)(4,26,23,41,19,22)(5,20,16,40,25,29)(6,14,9,39,31,36)(10,33,24,35,12,21)(11,27,17,34,18,28)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43), (2,38,37,43,7,8)(3,32,30,42,13,15)(4,26,23,41,19,22)(5,20,16,40,25,29)(6,14,9,39,31,36)(10,33,24,35,12,21)(11,27,17,34,18,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)], [(2,38,37,43,7,8),(3,32,30,42,13,15),(4,26,23,41,19,22),(5,20,16,40,25,29),(6,14,9,39,31,36),(10,33,24,35,12,21),(11,27,17,34,18,28)]])

Matrix representation of C43⋊C6 in GL6(𝔽1033)

010000
001000
000100
000010
000001
1032678272868272678
,
100000
3551031187999377271
102992210115165201007
196174312872801193
837857397555941838
4361465143956276

G:=sub<GL(6,GF(1033))| [0,0,0,0,0,1032,1,0,0,0,0,678,0,1,0,0,0,272,0,0,1,0,0,868,0,0,0,1,0,272,0,0,0,0,1,678],[1,355,1029,196,837,4,0,1031,922,174,857,361,0,187,1011,312,397,465,0,999,516,872,555,143,0,377,520,801,941,956,0,271,1007,193,838,276] >;

C43⋊C6 in GAP, Magma, Sage, TeX

C_{43}\rtimes C_6
% in TeX

G:=Group("C43:C6");
// GroupNames label

G:=SmallGroup(258,1);
// by ID

G=gap.SmallGroup(258,1);
# by ID

G:=PCGroup([3,-2,-3,-43,2270,977]);
// Polycyclic

G:=Group<a,b|a^43=b^6=1,b*a*b^-1=a^7>;
// generators/relations

Export

Subgroup lattice of C43⋊C6 in TeX
Character table of C43⋊C6 in TeX

׿
×
𝔽