direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C4○D4×C17, D4⋊2C34, Q8⋊2C34, C34.13C23, C68.21C22, (C2×C4)⋊3C34, (C2×C68)⋊7C2, (D4×C17)⋊5C2, C4.5(C2×C34), (Q8×C17)⋊5C2, C22.(C2×C34), (C2×C34).2C22, C2.3(C22×C34), SmallGroup(272,49)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4○D4×C17
G = < a,b,c,d | a17=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 58 33 135)(2 59 34 136)(3 60 18 120)(4 61 19 121)(5 62 20 122)(6 63 21 123)(7 64 22 124)(8 65 23 125)(9 66 24 126)(10 67 25 127)(11 68 26 128)(12 52 27 129)(13 53 28 130)(14 54 29 131)(15 55 30 132)(16 56 31 133)(17 57 32 134)(35 111 102 77)(36 112 86 78)(37 113 87 79)(38 114 88 80)(39 115 89 81)(40 116 90 82)(41 117 91 83)(42 118 92 84)(43 119 93 85)(44 103 94 69)(45 104 95 70)(46 105 96 71)(47 106 97 72)(48 107 98 73)(49 108 99 74)(50 109 100 75)(51 110 101 76)
(1 135 33 58)(2 136 34 59)(3 120 18 60)(4 121 19 61)(5 122 20 62)(6 123 21 63)(7 124 22 64)(8 125 23 65)(9 126 24 66)(10 127 25 67)(11 128 26 68)(12 129 27 52)(13 130 28 53)(14 131 29 54)(15 132 30 55)(16 133 31 56)(17 134 32 57)(35 111 102 77)(36 112 86 78)(37 113 87 79)(38 114 88 80)(39 115 89 81)(40 116 90 82)(41 117 91 83)(42 118 92 84)(43 119 93 85)(44 103 94 69)(45 104 95 70)(46 105 96 71)(47 106 97 72)(48 107 98 73)(49 108 99 74)(50 109 100 75)(51 110 101 76)
(1 103)(2 104)(3 105)(4 106)(5 107)(6 108)(7 109)(8 110)(9 111)(10 112)(11 113)(12 114)(13 115)(14 116)(15 117)(16 118)(17 119)(18 71)(19 72)(20 73)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 81)(29 82)(30 83)(31 84)(32 85)(33 69)(34 70)(35 126)(36 127)(37 128)(38 129)(39 130)(40 131)(41 132)(42 133)(43 134)(44 135)(45 136)(46 120)(47 121)(48 122)(49 123)(50 124)(51 125)(52 88)(53 89)(54 90)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)(61 97)(62 98)(63 99)(64 100)(65 101)(66 102)(67 86)(68 87)
G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,58,33,135)(2,59,34,136)(3,60,18,120)(4,61,19,121)(5,62,20,122)(6,63,21,123)(7,64,22,124)(8,65,23,125)(9,66,24,126)(10,67,25,127)(11,68,26,128)(12,52,27,129)(13,53,28,130)(14,54,29,131)(15,55,30,132)(16,56,31,133)(17,57,32,134)(35,111,102,77)(36,112,86,78)(37,113,87,79)(38,114,88,80)(39,115,89,81)(40,116,90,82)(41,117,91,83)(42,118,92,84)(43,119,93,85)(44,103,94,69)(45,104,95,70)(46,105,96,71)(47,106,97,72)(48,107,98,73)(49,108,99,74)(50,109,100,75)(51,110,101,76), (1,135,33,58)(2,136,34,59)(3,120,18,60)(4,121,19,61)(5,122,20,62)(6,123,21,63)(7,124,22,64)(8,125,23,65)(9,126,24,66)(10,127,25,67)(11,128,26,68)(12,129,27,52)(13,130,28,53)(14,131,29,54)(15,132,30,55)(16,133,31,56)(17,134,32,57)(35,111,102,77)(36,112,86,78)(37,113,87,79)(38,114,88,80)(39,115,89,81)(40,116,90,82)(41,117,91,83)(42,118,92,84)(43,119,93,85)(44,103,94,69)(45,104,95,70)(46,105,96,71)(47,106,97,72)(48,107,98,73)(49,108,99,74)(50,109,100,75)(51,110,101,76), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,69)(34,70)(35,126)(36,127)(37,128)(38,129)(39,130)(40,131)(41,132)(42,133)(43,134)(44,135)(45,136)(46,120)(47,121)(48,122)(49,123)(50,124)(51,125)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(67,86)(68,87)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,58,33,135)(2,59,34,136)(3,60,18,120)(4,61,19,121)(5,62,20,122)(6,63,21,123)(7,64,22,124)(8,65,23,125)(9,66,24,126)(10,67,25,127)(11,68,26,128)(12,52,27,129)(13,53,28,130)(14,54,29,131)(15,55,30,132)(16,56,31,133)(17,57,32,134)(35,111,102,77)(36,112,86,78)(37,113,87,79)(38,114,88,80)(39,115,89,81)(40,116,90,82)(41,117,91,83)(42,118,92,84)(43,119,93,85)(44,103,94,69)(45,104,95,70)(46,105,96,71)(47,106,97,72)(48,107,98,73)(49,108,99,74)(50,109,100,75)(51,110,101,76), (1,135,33,58)(2,136,34,59)(3,120,18,60)(4,121,19,61)(5,122,20,62)(6,123,21,63)(7,124,22,64)(8,125,23,65)(9,126,24,66)(10,127,25,67)(11,128,26,68)(12,129,27,52)(13,130,28,53)(14,131,29,54)(15,132,30,55)(16,133,31,56)(17,134,32,57)(35,111,102,77)(36,112,86,78)(37,113,87,79)(38,114,88,80)(39,115,89,81)(40,116,90,82)(41,117,91,83)(42,118,92,84)(43,119,93,85)(44,103,94,69)(45,104,95,70)(46,105,96,71)(47,106,97,72)(48,107,98,73)(49,108,99,74)(50,109,100,75)(51,110,101,76), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,71)(19,72)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,69)(34,70)(35,126)(36,127)(37,128)(38,129)(39,130)(40,131)(41,132)(42,133)(43,134)(44,135)(45,136)(46,120)(47,121)(48,122)(49,123)(50,124)(51,125)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(67,86)(68,87) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,58,33,135),(2,59,34,136),(3,60,18,120),(4,61,19,121),(5,62,20,122),(6,63,21,123),(7,64,22,124),(8,65,23,125),(9,66,24,126),(10,67,25,127),(11,68,26,128),(12,52,27,129),(13,53,28,130),(14,54,29,131),(15,55,30,132),(16,56,31,133),(17,57,32,134),(35,111,102,77),(36,112,86,78),(37,113,87,79),(38,114,88,80),(39,115,89,81),(40,116,90,82),(41,117,91,83),(42,118,92,84),(43,119,93,85),(44,103,94,69),(45,104,95,70),(46,105,96,71),(47,106,97,72),(48,107,98,73),(49,108,99,74),(50,109,100,75),(51,110,101,76)], [(1,135,33,58),(2,136,34,59),(3,120,18,60),(4,121,19,61),(5,122,20,62),(6,123,21,63),(7,124,22,64),(8,125,23,65),(9,126,24,66),(10,127,25,67),(11,128,26,68),(12,129,27,52),(13,130,28,53),(14,131,29,54),(15,132,30,55),(16,133,31,56),(17,134,32,57),(35,111,102,77),(36,112,86,78),(37,113,87,79),(38,114,88,80),(39,115,89,81),(40,116,90,82),(41,117,91,83),(42,118,92,84),(43,119,93,85),(44,103,94,69),(45,104,95,70),(46,105,96,71),(47,106,97,72),(48,107,98,73),(49,108,99,74),(50,109,100,75),(51,110,101,76)], [(1,103),(2,104),(3,105),(4,106),(5,107),(6,108),(7,109),(8,110),(9,111),(10,112),(11,113),(12,114),(13,115),(14,116),(15,117),(16,118),(17,119),(18,71),(19,72),(20,73),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,81),(29,82),(30,83),(31,84),(32,85),(33,69),(34,70),(35,126),(36,127),(37,128),(38,129),(39,130),(40,131),(41,132),(42,133),(43,134),(44,135),(45,136),(46,120),(47,121),(48,122),(49,123),(50,124),(51,125),(52,88),(53,89),(54,90),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96),(61,97),(62,98),(63,99),(64,100),(65,101),(66,102),(67,86),(68,87)]])
170 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 17A | ··· | 17P | 34A | ··· | 34P | 34Q | ··· | 34BL | 68A | ··· | 68AF | 68AG | ··· | 68CB |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 17 | ··· | 17 | 34 | ··· | 34 | 34 | ··· | 34 | 68 | ··· | 68 | 68 | ··· | 68 |
size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 |
170 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C17 | C34 | C34 | C34 | C4○D4 | C4○D4×C17 |
kernel | C4○D4×C17 | C2×C68 | D4×C17 | Q8×C17 | C4○D4 | C2×C4 | D4 | Q8 | C17 | C1 |
# reps | 1 | 3 | 3 | 1 | 16 | 48 | 48 | 16 | 2 | 32 |
Matrix representation of C4○D4×C17 ►in GL2(𝔽137) generated by
123 | 0 |
0 | 123 |
100 | 0 |
0 | 100 |
37 | 46 |
0 | 100 |
46 | 123 |
63 | 91 |
G:=sub<GL(2,GF(137))| [123,0,0,123],[100,0,0,100],[37,0,46,100],[46,63,123,91] >;
C4○D4×C17 in GAP, Magma, Sage, TeX
C_4\circ D_4\times C_{17}
% in TeX
G:=Group("C4oD4xC17");
// GroupNames label
G:=SmallGroup(272,49);
// by ID
G=gap.SmallGroup(272,49);
# by ID
G:=PCGroup([5,-2,-2,-2,-17,-2,1381,522]);
// Polycyclic
G:=Group<a,b,c,d|a^17=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations
Export