Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C34

Direct product G=N×Q with N=C4 and Q=C2×C34
dρLabelID
C22×C68272C2^2xC68272,46

Semidirect products G=N:Q with N=C4 and Q=C2×C34
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C34) = D4×C34φ: C2×C34/C34C2 ⊆ Aut C4136C4:(C2xC34)272,47

Non-split extensions G=N.Q with N=C4 and Q=C2×C34
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C34) = D8×C17φ: C2×C34/C34C2 ⊆ Aut C41362C4.1(C2xC34)272,25
C4.2(C2×C34) = SD16×C17φ: C2×C34/C34C2 ⊆ Aut C41362C4.2(C2xC34)272,26
C4.3(C2×C34) = Q16×C17φ: C2×C34/C34C2 ⊆ Aut C42722C4.3(C2xC34)272,27
C4.4(C2×C34) = Q8×C34φ: C2×C34/C34C2 ⊆ Aut C4272C4.4(C2xC34)272,48
C4.5(C2×C34) = C4○D4×C17φ: C2×C34/C34C2 ⊆ Aut C41362C4.5(C2xC34)272,49
C4.6(C2×C34) = M4(2)×C17central extension (φ=1)1362C4.6(C2xC34)272,24

׿
×
𝔽