direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5×C7⋊D4, C35⋊8D4, Dic7⋊C10, D14⋊2C10, C10.17D14, C70.17C22, C7⋊2(C5×D4), C22⋊(C5×D7), (C2×C70)⋊4C2, (C2×C10)⋊1D7, (C2×C14)⋊2C10, (C10×D7)⋊5C2, C2.5(C10×D7), C14.5(C2×C10), (C5×Dic7)⋊4C2, SmallGroup(280,18)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C7⋊D4
G = < a,b,c,d | a5=b7=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
(1 57 43 29 15)(2 58 44 30 16)(3 59 45 31 17)(4 60 46 32 18)(5 61 47 33 19)(6 62 48 34 20)(7 63 49 35 21)(8 64 50 36 22)(9 65 51 37 23)(10 66 52 38 24)(11 67 53 39 25)(12 68 54 40 26)(13 69 55 41 27)(14 70 56 42 28)(71 127 113 99 85)(72 128 114 100 86)(73 129 115 101 87)(74 130 116 102 88)(75 131 117 103 89)(76 132 118 104 90)(77 133 119 105 91)(78 134 120 106 92)(79 135 121 107 93)(80 136 122 108 94)(81 137 123 109 95)(82 138 124 110 96)(83 139 125 111 97)(84 140 126 112 98)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)
(1 71 8 78)(2 77 9 84)(3 76 10 83)(4 75 11 82)(5 74 12 81)(6 73 13 80)(7 72 14 79)(15 85 22 92)(16 91 23 98)(17 90 24 97)(18 89 25 96)(19 88 26 95)(20 87 27 94)(21 86 28 93)(29 99 36 106)(30 105 37 112)(31 104 38 111)(32 103 39 110)(33 102 40 109)(34 101 41 108)(35 100 42 107)(43 113 50 120)(44 119 51 126)(45 118 52 125)(46 117 53 124)(47 116 54 123)(48 115 55 122)(49 114 56 121)(57 127 64 134)(58 133 65 140)(59 132 66 139)(60 131 67 138)(61 130 68 137)(62 129 69 136)(63 128 70 135)
(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(30 35)(31 34)(32 33)(37 42)(38 41)(39 40)(44 49)(45 48)(46 47)(51 56)(52 55)(53 54)(58 63)(59 62)(60 61)(65 70)(66 69)(67 68)(71 78)(72 84)(73 83)(74 82)(75 81)(76 80)(77 79)(85 92)(86 98)(87 97)(88 96)(89 95)(90 94)(91 93)(99 106)(100 112)(101 111)(102 110)(103 109)(104 108)(105 107)(113 120)(114 126)(115 125)(116 124)(117 123)(118 122)(119 121)(127 134)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)
G:=sub<Sym(140)| (1,57,43,29,15)(2,58,44,30,16)(3,59,45,31,17)(4,60,46,32,18)(5,61,47,33,19)(6,62,48,34,20)(7,63,49,35,21)(8,64,50,36,22)(9,65,51,37,23)(10,66,52,38,24)(11,67,53,39,25)(12,68,54,40,26)(13,69,55,41,27)(14,70,56,42,28)(71,127,113,99,85)(72,128,114,100,86)(73,129,115,101,87)(74,130,116,102,88)(75,131,117,103,89)(76,132,118,104,90)(77,133,119,105,91)(78,134,120,106,92)(79,135,121,107,93)(80,136,122,108,94)(81,137,123,109,95)(82,138,124,110,96)(83,139,125,111,97)(84,140,126,112,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140), (1,71,8,78)(2,77,9,84)(3,76,10,83)(4,75,11,82)(5,74,12,81)(6,73,13,80)(7,72,14,79)(15,85,22,92)(16,91,23,98)(17,90,24,97)(18,89,25,96)(19,88,26,95)(20,87,27,94)(21,86,28,93)(29,99,36,106)(30,105,37,112)(31,104,38,111)(32,103,39,110)(33,102,40,109)(34,101,41,108)(35,100,42,107)(43,113,50,120)(44,119,51,126)(45,118,52,125)(46,117,53,124)(47,116,54,123)(48,115,55,122)(49,114,56,121)(57,127,64,134)(58,133,65,140)(59,132,66,139)(60,131,67,138)(61,130,68,137)(62,129,69,136)(63,128,70,135), (2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)(46,47)(51,56)(52,55)(53,54)(58,63)(59,62)(60,61)(65,70)(66,69)(67,68)(71,78)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(85,92)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)(99,106)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)(113,120)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(127,134)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)>;
G:=Group( (1,57,43,29,15)(2,58,44,30,16)(3,59,45,31,17)(4,60,46,32,18)(5,61,47,33,19)(6,62,48,34,20)(7,63,49,35,21)(8,64,50,36,22)(9,65,51,37,23)(10,66,52,38,24)(11,67,53,39,25)(12,68,54,40,26)(13,69,55,41,27)(14,70,56,42,28)(71,127,113,99,85)(72,128,114,100,86)(73,129,115,101,87)(74,130,116,102,88)(75,131,117,103,89)(76,132,118,104,90)(77,133,119,105,91)(78,134,120,106,92)(79,135,121,107,93)(80,136,122,108,94)(81,137,123,109,95)(82,138,124,110,96)(83,139,125,111,97)(84,140,126,112,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140), (1,71,8,78)(2,77,9,84)(3,76,10,83)(4,75,11,82)(5,74,12,81)(6,73,13,80)(7,72,14,79)(15,85,22,92)(16,91,23,98)(17,90,24,97)(18,89,25,96)(19,88,26,95)(20,87,27,94)(21,86,28,93)(29,99,36,106)(30,105,37,112)(31,104,38,111)(32,103,39,110)(33,102,40,109)(34,101,41,108)(35,100,42,107)(43,113,50,120)(44,119,51,126)(45,118,52,125)(46,117,53,124)(47,116,54,123)(48,115,55,122)(49,114,56,121)(57,127,64,134)(58,133,65,140)(59,132,66,139)(60,131,67,138)(61,130,68,137)(62,129,69,136)(63,128,70,135), (2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)(46,47)(51,56)(52,55)(53,54)(58,63)(59,62)(60,61)(65,70)(66,69)(67,68)(71,78)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(85,92)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)(99,106)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)(113,120)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(127,134)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135) );
G=PermutationGroup([[(1,57,43,29,15),(2,58,44,30,16),(3,59,45,31,17),(4,60,46,32,18),(5,61,47,33,19),(6,62,48,34,20),(7,63,49,35,21),(8,64,50,36,22),(9,65,51,37,23),(10,66,52,38,24),(11,67,53,39,25),(12,68,54,40,26),(13,69,55,41,27),(14,70,56,42,28),(71,127,113,99,85),(72,128,114,100,86),(73,129,115,101,87),(74,130,116,102,88),(75,131,117,103,89),(76,132,118,104,90),(77,133,119,105,91),(78,134,120,106,92),(79,135,121,107,93),(80,136,122,108,94),(81,137,123,109,95),(82,138,124,110,96),(83,139,125,111,97),(84,140,126,112,98)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140)], [(1,71,8,78),(2,77,9,84),(3,76,10,83),(4,75,11,82),(5,74,12,81),(6,73,13,80),(7,72,14,79),(15,85,22,92),(16,91,23,98),(17,90,24,97),(18,89,25,96),(19,88,26,95),(20,87,27,94),(21,86,28,93),(29,99,36,106),(30,105,37,112),(31,104,38,111),(32,103,39,110),(33,102,40,109),(34,101,41,108),(35,100,42,107),(43,113,50,120),(44,119,51,126),(45,118,52,125),(46,117,53,124),(47,116,54,123),(48,115,55,122),(49,114,56,121),(57,127,64,134),(58,133,65,140),(59,132,66,139),(60,131,67,138),(61,130,68,137),(62,129,69,136),(63,128,70,135)], [(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(30,35),(31,34),(32,33),(37,42),(38,41),(39,40),(44,49),(45,48),(46,47),(51,56),(52,55),(53,54),(58,63),(59,62),(60,61),(65,70),(66,69),(67,68),(71,78),(72,84),(73,83),(74,82),(75,81),(76,80),(77,79),(85,92),(86,98),(87,97),(88,96),(89,95),(90,94),(91,93),(99,106),(100,112),(101,111),(102,110),(103,109),(104,108),(105,107),(113,120),(114,126),(115,125),(116,124),(117,123),(118,122),(119,121),(127,134),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135)]])
85 conjugacy classes
| class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 5C | 5D | 7A | 7B | 7C | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 14A | ··· | 14I | 20A | 20B | 20C | 20D | 35A | ··· | 35L | 70A | ··· | 70AJ |
| order | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 14 | ··· | 14 | 20 | 20 | 20 | 20 | 35 | ··· | 35 | 70 | ··· | 70 |
| size | 1 | 1 | 2 | 14 | 14 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | ··· | 2 | 14 | 14 | 14 | 14 | 2 | ··· | 2 | 2 | ··· | 2 |
85 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | |||||||||
| image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | D7 | D14 | C5×D4 | C7⋊D4 | C5×D7 | C10×D7 | C5×C7⋊D4 |
| kernel | C5×C7⋊D4 | C5×Dic7 | C10×D7 | C2×C70 | C7⋊D4 | Dic7 | D14 | C2×C14 | C35 | C2×C10 | C10 | C7 | C5 | C22 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | 3 | 3 | 4 | 6 | 12 | 12 | 24 |
Matrix representation of C5×C7⋊D4 ►in GL2(𝔽281) generated by
| 153 | 0 |
| 0 | 153 |
| 240 | 280 |
| 1 | 0 |
| 25 | 152 |
| 251 | 256 |
| 1 | 0 |
| 240 | 280 |
G:=sub<GL(2,GF(281))| [153,0,0,153],[240,1,280,0],[25,251,152,256],[1,240,0,280] >;
C5×C7⋊D4 in GAP, Magma, Sage, TeX
C_5\times C_7\rtimes D_4
% in TeX
G:=Group("C5xC7:D4"); // GroupNames label
G:=SmallGroup(280,18);
// by ID
G=gap.SmallGroup(280,18);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-7,221,6004]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^7=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export