direct product, metacyclic, supersoluble, monomial
Aliases: C5×C9⋊C6, C9⋊C30, D9⋊C15, C45⋊2C6, 3- 1+2⋊C10, (C5×D9)⋊C3, C32.(C5×S3), C3.3(S3×C15), C15.7(C3×S3), (C3×C15).2S3, (C5×3- 1+2)⋊2C2, SmallGroup(270,11)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C45 — C5×3- 1+2 — C5×C9⋊C6 |
C9 — C5×C9⋊C6 |
Generators and relations for C5×C9⋊C6
G = < a,b,c | a5=b9=c6=1, ab=ba, ac=ca, cbc-1=b2 >
(1 44 35 26 17)(2 45 36 27 18)(3 37 28 19 10)(4 38 29 20 11)(5 39 30 21 12)(6 40 31 22 13)(7 41 32 23 14)(8 42 33 24 15)(9 43 34 25 16)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(2 6 8 9 5 3)(4 7)(10 18 13 15 16 12)(11 14)(19 27 22 24 25 21)(20 23)(28 36 31 33 34 30)(29 32)(37 45 40 42 43 39)(38 41)
G:=sub<Sym(45)| (1,44,35,26,17)(2,45,36,27,18)(3,37,28,19,10)(4,38,29,20,11)(5,39,30,21,12)(6,40,31,22,13)(7,41,32,23,14)(8,42,33,24,15)(9,43,34,25,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (2,6,8,9,5,3)(4,7)(10,18,13,15,16,12)(11,14)(19,27,22,24,25,21)(20,23)(28,36,31,33,34,30)(29,32)(37,45,40,42,43,39)(38,41)>;
G:=Group( (1,44,35,26,17)(2,45,36,27,18)(3,37,28,19,10)(4,38,29,20,11)(5,39,30,21,12)(6,40,31,22,13)(7,41,32,23,14)(8,42,33,24,15)(9,43,34,25,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (2,6,8,9,5,3)(4,7)(10,18,13,15,16,12)(11,14)(19,27,22,24,25,21)(20,23)(28,36,31,33,34,30)(29,32)(37,45,40,42,43,39)(38,41) );
G=PermutationGroup([[(1,44,35,26,17),(2,45,36,27,18),(3,37,28,19,10),(4,38,29,20,11),(5,39,30,21,12),(6,40,31,22,13),(7,41,32,23,14),(8,42,33,24,15),(9,43,34,25,16)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(2,6,8,9,5,3),(4,7),(10,18,13,15,16,12),(11,14),(19,27,22,24,25,21),(20,23),(28,36,31,33,34,30),(29,32),(37,45,40,42,43,39),(38,41)]])
50 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 5A | 5B | 5C | 5D | 6A | 6B | 9A | 9B | 9C | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | 15E | ··· | 15L | 30A | ··· | 30H | 45A | ··· | 45L |
order | 1 | 2 | 3 | 3 | 3 | 5 | 5 | 5 | 5 | 6 | 6 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 15 | 15 | 15 | 15 | 15 | ··· | 15 | 30 | ··· | 30 | 45 | ··· | 45 |
size | 1 | 9 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 9 | 9 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 9 | ··· | 9 | 6 | ··· | 6 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 |
type | + | + | + | + | ||||||||||
image | C1 | C2 | C3 | C5 | C6 | C10 | C15 | C30 | S3 | C3×S3 | C5×S3 | S3×C15 | C9⋊C6 | C5×C9⋊C6 |
kernel | C5×C9⋊C6 | C5×3- 1+2 | C5×D9 | C9⋊C6 | C45 | 3- 1+2 | D9 | C9 | C3×C15 | C15 | C32 | C3 | C5 | C1 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 8 | 8 | 1 | 2 | 4 | 8 | 1 | 4 |
Matrix representation of C5×C9⋊C6 ►in GL6(𝔽181)
135 | 0 | 0 | 0 | 0 | 0 |
0 | 135 | 0 | 0 | 0 | 0 |
0 | 0 | 135 | 0 | 0 | 0 |
0 | 0 | 0 | 135 | 0 | 0 |
0 | 0 | 0 | 0 | 135 | 0 |
0 | 0 | 0 | 0 | 0 | 135 |
0 | 0 | 0 | 180 | 0 | 0 |
0 | 0 | 1 | 180 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 180 |
0 | 0 | 0 | 0 | 1 | 180 |
180 | 1 | 0 | 0 | 0 | 0 |
180 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 180 | 0 | 0 |
0 | 0 | 0 | 180 | 0 | 0 |
G:=sub<GL(6,GF(181))| [135,0,0,0,0,0,0,135,0,0,0,0,0,0,135,0,0,0,0,0,0,135,0,0,0,0,0,0,135,0,0,0,0,0,0,135],[0,0,0,0,180,180,0,0,0,0,1,0,0,1,0,0,0,0,180,180,0,0,0,0,0,0,0,1,0,0,0,0,180,180,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,180,180,0,0,0,1,0,0,0,0,1,0,0,0] >;
C5×C9⋊C6 in GAP, Magma, Sage, TeX
C_5\times C_9\rtimes C_6
% in TeX
G:=Group("C5xC9:C6");
// GroupNames label
G:=SmallGroup(270,11);
// by ID
G=gap.SmallGroup(270,11);
# by ID
G:=PCGroup([5,-2,-3,-5,-3,-3,3003,1208,138,4504]);
// Polycyclic
G:=Group<a,b,c|a^5=b^9=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations
Export