Extensions 1→N→G→Q→1 with N=C15 and Q=C3xS3

Direct product G=NxQ with N=C15 and Q=C3xS3
dρLabelID
S3xC3xC1590S3xC3xC15270,24

Semidirect products G=N:Q with N=C15 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C15:1(C3xS3) = C3xC3:D15φ: C3xS3/C32C2 ⊆ Aut C1590C15:1(C3xS3)270,27
C15:2(C3xS3) = C32xD15φ: C3xS3/C32C2 ⊆ Aut C1590C15:2(C3xS3)270,25
C15:3(C3xS3) = C15xC3:S3φ: C3xS3/C32C2 ⊆ Aut C1590C15:3(C3xS3)270,26

Non-split extensions G=N.Q with N=C15 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C15.1(C3xS3) = C3xD45φ: C3xS3/C32C2 ⊆ Aut C15902C15.1(C3xS3)270,12
C15.2(C3xS3) = He3:D5φ: C3xS3/C32C2 ⊆ Aut C15456+C15.2(C3xS3)270,14
C15.3(C3xS3) = D45:C3φ: C3xS3/C32C2 ⊆ Aut C15456+C15.3(C3xS3)270,15
C15.4(C3xS3) = C9xD15φ: C3xS3/C32C2 ⊆ Aut C15902C15.4(C3xS3)270,13
C15.5(C3xS3) = C15xD9φ: C3xS3/C32C2 ⊆ Aut C15902C15.5(C3xS3)270,8
C15.6(C3xS3) = C5xC32:C6φ: C3xS3/C32C2 ⊆ Aut C15456C15.6(C3xS3)270,10
C15.7(C3xS3) = C5xC9:C6φ: C3xS3/C32C2 ⊆ Aut C15456C15.7(C3xS3)270,11
C15.8(C3xS3) = S3xC45central extension (φ=1)902C15.8(C3xS3)270,9

׿
x
:
Z
F
o
wr
Q
<