Copied to
clipboard

G = C65⋊C4order 260 = 22·5·13

3rd semidirect product of C65 and C4 acting faithfully

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C653C4, C13⋊Dic5, D13.D5, C53(C13⋊C4), (C5×D13).1C2, SmallGroup(260,6)

Series: Derived Chief Lower central Upper central

C1C65 — C65⋊C4
C1C13C65C5×D13 — C65⋊C4
C65 — C65⋊C4
C1

Generators and relations for C65⋊C4
 G = < a,b | a65=b4=1, bab-1=a34 >

13C2
65C4
13C10
13Dic5
5C13⋊C4

Character table of C65⋊C4

 class 124A4B5A5B10A10B13A13B13C65A65B65C65D65E65F65G65H65I65J65K65L
 size 1136565222626444444444444444
ρ111111111111111111111111    trivial
ρ211-1-11111111111111111111    linear of order 2
ρ31-1-ii11-1-1111111111111111    linear of order 4
ρ41-1i-i11-1-1111111111111111    linear of order 4
ρ52200-1+5/2-1-5/2-1+5/2-1-5/2222-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ62200-1-5/2-1+5/2-1-5/2-1+5/2222-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ72-200-1+5/2-1-5/21-5/21+5/2222-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2    symplectic lifted from Dic5, Schur index 2
ρ82-200-1-5/2-1+5/21+5/21-5/2222-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2    symplectic lifted from Dic5, Schur index 2
ρ940004400ζ131213813513ζ139137136134ζ13111310133132ζ13111310133132ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ131213813513    orthogonal lifted from C13⋊C4
ρ1040004400ζ139137136134ζ13111310133132ζ131213813513ζ131213813513ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ139137136134    orthogonal lifted from C13⋊C4
ρ1140004400ζ13111310133132ζ131213813513ζ139137136134ζ139137136134ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132    orthogonal lifted from C13⋊C4
ρ124000-1-5-1+500ζ131213813513ζ139137136134ζ13111310133132ζ53ζ131153ζ13252ζ131052ζ133ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ131254ζ135ζ1385ζ135ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ13854ζ1355ζ13125ζ13ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ131253ζ1352ζ13852ζ135    complex faithful
ρ134000-1-5-1+500ζ131213813513ζ139137136134ζ13111310133132ζ53ζ131053ζ13352ζ131152ζ132ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ131254ζ135ζ1385ζ135ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ13853ζ13552ζ131252ζ13    complex faithful
ρ144000-1+5-1-500ζ139137136134ζ13111310133132ζ131213813513ζ54ζ131254ζ135ζ1385ζ135ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ13753ζ13652ζ13952ζ134ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ13754ζ1365ζ1395ζ134    complex faithful
ρ154000-1+5-1-500ζ13111310133132ζ131213813513ζ139137136134ζ54ζ13954ζ1345ζ1375ζ136ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ131153ζ13252ζ131052ζ133ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ131254ζ135ζ1385ζ135ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ131154ζ1325ζ13105ζ133    complex faithful
ρ164000-1-5-1+500ζ13111310133132ζ131213813513ζ139137136134ζ53ζ13953ζ13452ζ13752ζ136ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ131254ζ135ζ1385ζ135ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ131054ζ1335ζ13115ζ132ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ131153ζ13252ζ131052ζ133    complex faithful
ρ174000-1-5-1+500ζ139137136134ζ13111310133132ζ131213813513ζ53ζ131253ζ1352ζ13852ζ135ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ131254ζ135ζ1385ζ135ζ54ζ13954ζ1345ζ1375ζ136ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ13753ζ13652ζ13952ζ134    complex faithful
ρ184000-1+5-1-500ζ139137136134ζ13111310133132ζ131213813513ζ54ζ13854ζ1355ζ13125ζ13ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ13953ζ13452ζ13752ζ136ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ131254ζ135ζ1385ζ135ζ54ζ13954ζ1345ζ1375ζ136    complex faithful
ρ194000-1+5-1-500ζ131213813513ζ139137136134ζ13111310133132ζ54ζ131154ζ1325ζ13105ζ133ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ131253ζ1352ζ13852ζ135ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ131254ζ135ζ1385ζ135    complex faithful
ρ204000-1+5-1-500ζ13111310133132ζ131213813513ζ139137136134ζ54ζ13754ζ1365ζ1395ζ134ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ131053ζ13352ζ131152ζ132ζ54ζ131254ζ135ζ1385ζ135ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ131054ζ1335ζ13115ζ132    complex faithful
ρ214000-1-5-1+500ζ13111310133132ζ131213813513ζ139137136134ζ53ζ13753ζ13652ζ13952ζ134ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ131254ζ135ζ1385ζ135ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ131154ζ1325ζ13105ζ133ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ13853ζ13552ζ131252ζ13ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ131053ζ13352ζ131152ζ132    complex faithful
ρ224000-1+5-1-500ζ131213813513ζ139137136134ζ13111310133132ζ54ζ131054ζ1335ζ13115ζ132ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ13953ζ13452ζ13752ζ136ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ13853ζ13552ζ131252ζ13ζ54ζ13754ζ1365ζ1395ζ134ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ131254ζ135ζ1385ζ135ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ13854ζ1355ζ13125ζ13    complex faithful
ρ234000-1-5-1+500ζ139137136134ζ13111310133132ζ131213813513ζ53ζ13853ζ13552ζ131252ζ13ζ54ζ131254ζ135ζ1385ζ135ζ54ζ131154ζ1325ζ13105ζ133ζ54ζ131054ζ1335ζ13115ζ132ζ54ζ13954ζ1345ζ1375ζ136ζ54ζ13854ζ1355ζ13125ζ13ζ54ζ13754ζ1365ζ1395ζ134ζ53ζ131053ζ13352ζ131152ζ132ζ53ζ131153ζ13252ζ131052ζ133ζ53ζ13753ζ13652ζ13952ζ134ζ53ζ131253ζ1352ζ13852ζ135ζ53ζ13953ζ13452ζ13752ζ136    complex faithful

Smallest permutation representation of C65⋊C4
On 65 points
Generators in S65
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65)
(2 45 52 35)(3 24 38 4)(5 47 10 7)(6 26 61 41)(8 49 33 44)(9 28 19 13)(11 51 56 16)(12 30 42 50)(14 53)(15 32 65 22)(17 55 37 25)(18 34 23 59)(20 57 60 62)(21 36 46 31)(27 40)(29 63 64 43)(39 48 54 58)

G:=sub<Sym(65)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65), (2,45,52,35)(3,24,38,4)(5,47,10,7)(6,26,61,41)(8,49,33,44)(9,28,19,13)(11,51,56,16)(12,30,42,50)(14,53)(15,32,65,22)(17,55,37,25)(18,34,23,59)(20,57,60,62)(21,36,46,31)(27,40)(29,63,64,43)(39,48,54,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65), (2,45,52,35)(3,24,38,4)(5,47,10,7)(6,26,61,41)(8,49,33,44)(9,28,19,13)(11,51,56,16)(12,30,42,50)(14,53)(15,32,65,22)(17,55,37,25)(18,34,23,59)(20,57,60,62)(21,36,46,31)(27,40)(29,63,64,43)(39,48,54,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65)], [(2,45,52,35),(3,24,38,4),(5,47,10,7),(6,26,61,41),(8,49,33,44),(9,28,19,13),(11,51,56,16),(12,30,42,50),(14,53),(15,32,65,22),(17,55,37,25),(18,34,23,59),(20,57,60,62),(21,36,46,31),(27,40),(29,63,64,43),(39,48,54,58)]])

Matrix representation of C65⋊C4 in GL4(𝔽521) generated by

393419419393
128319131345
176417444420
1012563203
,
1000
25242425
0001
497472103496
G:=sub<GL(4,GF(521))| [393,128,176,101,419,319,417,256,419,131,444,320,393,345,420,3],[1,25,0,497,0,24,0,472,0,24,0,103,0,25,1,496] >;

C65⋊C4 in GAP, Magma, Sage, TeX

C_{65}\rtimes C_4
% in TeX

G:=Group("C65:C4");
// GroupNames label

G:=SmallGroup(260,6);
// by ID

G=gap.SmallGroup(260,6);
# by ID

G:=PCGroup([4,-2,-2,-5,-13,8,194,1603,1927]);
// Polycyclic

G:=Group<a,b|a^65=b^4=1,b*a*b^-1=a^34>;
// generators/relations

Export

Subgroup lattice of C65⋊C4 in TeX
Character table of C65⋊C4 in TeX

׿
×
𝔽