direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C6×D23, C46⋊C6, C138⋊2C2, C69⋊3C22, C23⋊(C2×C6), SmallGroup(276,7)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — C6×D23 |
Generators and relations for C6×D23
G = < a,b,c | a6=b23=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 99 50 76 36 116)(2 100 51 77 37 117)(3 101 52 78 38 118)(4 102 53 79 39 119)(5 103 54 80 40 120)(6 104 55 81 41 121)(7 105 56 82 42 122)(8 106 57 83 43 123)(9 107 58 84 44 124)(10 108 59 85 45 125)(11 109 60 86 46 126)(12 110 61 87 24 127)(13 111 62 88 25 128)(14 112 63 89 26 129)(15 113 64 90 27 130)(16 114 65 91 28 131)(17 115 66 92 29 132)(18 93 67 70 30 133)(19 94 68 71 31 134)(20 95 69 72 32 135)(21 96 47 73 33 136)(22 97 48 74 34 137)(23 98 49 75 35 138)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)(116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)
(1 75)(2 74)(3 73)(4 72)(5 71)(6 70)(7 92)(8 91)(9 90)(10 89)(11 88)(12 87)(13 86)(14 85)(15 84)(16 83)(17 82)(18 81)(19 80)(20 79)(21 78)(22 77)(23 76)(24 110)(25 109)(26 108)(27 107)(28 106)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 98)(37 97)(38 96)(39 95)(40 94)(41 93)(42 115)(43 114)(44 113)(45 112)(46 111)(47 118)(48 117)(49 116)(50 138)(51 137)(52 136)(53 135)(54 134)(55 133)(56 132)(57 131)(58 130)(59 129)(60 128)(61 127)(62 126)(63 125)(64 124)(65 123)(66 122)(67 121)(68 120)(69 119)
G:=sub<Sym(138)| (1,99,50,76,36,116)(2,100,51,77,37,117)(3,101,52,78,38,118)(4,102,53,79,39,119)(5,103,54,80,40,120)(6,104,55,81,41,121)(7,105,56,82,42,122)(8,106,57,83,43,123)(9,107,58,84,44,124)(10,108,59,85,45,125)(11,109,60,86,46,126)(12,110,61,87,24,127)(13,111,62,88,25,128)(14,112,63,89,26,129)(15,113,64,90,27,130)(16,114,65,91,28,131)(17,115,66,92,29,132)(18,93,67,70,30,133)(19,94,68,71,31,134)(20,95,69,72,32,135)(21,96,47,73,33,136)(22,97,48,74,34,137)(23,98,49,75,35,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138), (1,75)(2,74)(3,73)(4,72)(5,71)(6,70)(7,92)(8,91)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,115)(43,114)(44,113)(45,112)(46,111)(47,118)(48,117)(49,116)(50,138)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,131)(58,130)(59,129)(60,128)(61,127)(62,126)(63,125)(64,124)(65,123)(66,122)(67,121)(68,120)(69,119)>;
G:=Group( (1,99,50,76,36,116)(2,100,51,77,37,117)(3,101,52,78,38,118)(4,102,53,79,39,119)(5,103,54,80,40,120)(6,104,55,81,41,121)(7,105,56,82,42,122)(8,106,57,83,43,123)(9,107,58,84,44,124)(10,108,59,85,45,125)(11,109,60,86,46,126)(12,110,61,87,24,127)(13,111,62,88,25,128)(14,112,63,89,26,129)(15,113,64,90,27,130)(16,114,65,91,28,131)(17,115,66,92,29,132)(18,93,67,70,30,133)(19,94,68,71,31,134)(20,95,69,72,32,135)(21,96,47,73,33,136)(22,97,48,74,34,137)(23,98,49,75,35,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138), (1,75)(2,74)(3,73)(4,72)(5,71)(6,70)(7,92)(8,91)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,80)(20,79)(21,78)(22,77)(23,76)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,115)(43,114)(44,113)(45,112)(46,111)(47,118)(48,117)(49,116)(50,138)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,131)(58,130)(59,129)(60,128)(61,127)(62,126)(63,125)(64,124)(65,123)(66,122)(67,121)(68,120)(69,119) );
G=PermutationGroup([[(1,99,50,76,36,116),(2,100,51,77,37,117),(3,101,52,78,38,118),(4,102,53,79,39,119),(5,103,54,80,40,120),(6,104,55,81,41,121),(7,105,56,82,42,122),(8,106,57,83,43,123),(9,107,58,84,44,124),(10,108,59,85,45,125),(11,109,60,86,46,126),(12,110,61,87,24,127),(13,111,62,88,25,128),(14,112,63,89,26,129),(15,113,64,90,27,130),(16,114,65,91,28,131),(17,115,66,92,29,132),(18,93,67,70,30,133),(19,94,68,71,31,134),(20,95,69,72,32,135),(21,96,47,73,33,136),(22,97,48,74,34,137),(23,98,49,75,35,138)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115),(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)], [(1,75),(2,74),(3,73),(4,72),(5,71),(6,70),(7,92),(8,91),(9,90),(10,89),(11,88),(12,87),(13,86),(14,85),(15,84),(16,83),(17,82),(18,81),(19,80),(20,79),(21,78),(22,77),(23,76),(24,110),(25,109),(26,108),(27,107),(28,106),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,98),(37,97),(38,96),(39,95),(40,94),(41,93),(42,115),(43,114),(44,113),(45,112),(46,111),(47,118),(48,117),(49,116),(50,138),(51,137),(52,136),(53,135),(54,134),(55,133),(56,132),(57,131),(58,130),(59,129),(60,128),(61,127),(62,126),(63,125),(64,124),(65,123),(66,122),(67,121),(68,120),(69,119)]])
78 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 23A | ··· | 23K | 46A | ··· | 46K | 69A | ··· | 69V | 138A | ··· | 138V |
order | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 23 | ··· | 23 | 46 | ··· | 46 | 69 | ··· | 69 | 138 | ··· | 138 |
size | 1 | 1 | 23 | 23 | 1 | 1 | 1 | 1 | 23 | 23 | 23 | 23 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
78 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C6 | C6 | D23 | D46 | C3×D23 | C6×D23 |
kernel | C6×D23 | C3×D23 | C138 | D46 | D23 | C46 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 11 | 11 | 22 | 22 |
Matrix representation of C6×D23 ►in GL2(𝔽139) generated by
97 | 0 |
0 | 97 |
0 | 1 |
138 | 44 |
0 | 138 |
138 | 0 |
G:=sub<GL(2,GF(139))| [97,0,0,97],[0,138,1,44],[0,138,138,0] >;
C6×D23 in GAP, Magma, Sage, TeX
C_6\times D_{23}
% in TeX
G:=Group("C6xD23");
// GroupNames label
G:=SmallGroup(276,7);
// by ID
G=gap.SmallGroup(276,7);
# by ID
G:=PCGroup([4,-2,-2,-3,-23,4227]);
// Polycyclic
G:=Group<a,b,c|a^6=b^23=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export