direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C46, C6⋊C46, C138⋊3C2, C69⋊4C22, C3⋊(C2×C46), SmallGroup(276,8)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C46 |
Generators and relations for S3×C46
G = < a,b,c | a46=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)
(1 130 62)(2 131 63)(3 132 64)(4 133 65)(5 134 66)(6 135 67)(7 136 68)(8 137 69)(9 138 70)(10 93 71)(11 94 72)(12 95 73)(13 96 74)(14 97 75)(15 98 76)(16 99 77)(17 100 78)(18 101 79)(19 102 80)(20 103 81)(21 104 82)(22 105 83)(23 106 84)(24 107 85)(25 108 86)(26 109 87)(27 110 88)(28 111 89)(29 112 90)(30 113 91)(31 114 92)(32 115 47)(33 116 48)(34 117 49)(35 118 50)(36 119 51)(37 120 52)(38 121 53)(39 122 54)(40 123 55)(41 124 56)(42 125 57)(43 126 58)(44 127 59)(45 128 60)(46 129 61)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(47 138)(48 93)(49 94)(50 95)(51 96)(52 97)(53 98)(54 99)(55 100)(56 101)(57 102)(58 103)(59 104)(60 105)(61 106)(62 107)(63 108)(64 109)(65 110)(66 111)(67 112)(68 113)(69 114)(70 115)(71 116)(72 117)(73 118)(74 119)(75 120)(76 121)(77 122)(78 123)(79 124)(80 125)(81 126)(82 127)(83 128)(84 129)(85 130)(86 131)(87 132)(88 133)(89 134)(90 135)(91 136)(92 137)
G:=sub<Sym(138)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138), (1,130,62)(2,131,63)(3,132,64)(4,133,65)(5,134,66)(6,135,67)(7,136,68)(8,137,69)(9,138,70)(10,93,71)(11,94,72)(12,95,73)(13,96,74)(14,97,75)(15,98,76)(16,99,77)(17,100,78)(18,101,79)(19,102,80)(20,103,81)(21,104,82)(22,105,83)(23,106,84)(24,107,85)(25,108,86)(26,109,87)(27,110,88)(28,111,89)(29,112,90)(30,113,91)(31,114,92)(32,115,47)(33,116,48)(34,117,49)(35,118,50)(36,119,51)(37,120,52)(38,121,53)(39,122,54)(40,123,55)(41,124,56)(42,125,57)(43,126,58)(44,127,59)(45,128,60)(46,129,61), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(47,138)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,101)(57,102)(58,103)(59,104)(60,105)(61,106)(62,107)(63,108)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,130)(86,131)(87,132)(88,133)(89,134)(90,135)(91,136)(92,137)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138), (1,130,62)(2,131,63)(3,132,64)(4,133,65)(5,134,66)(6,135,67)(7,136,68)(8,137,69)(9,138,70)(10,93,71)(11,94,72)(12,95,73)(13,96,74)(14,97,75)(15,98,76)(16,99,77)(17,100,78)(18,101,79)(19,102,80)(20,103,81)(21,104,82)(22,105,83)(23,106,84)(24,107,85)(25,108,86)(26,109,87)(27,110,88)(28,111,89)(29,112,90)(30,113,91)(31,114,92)(32,115,47)(33,116,48)(34,117,49)(35,118,50)(36,119,51)(37,120,52)(38,121,53)(39,122,54)(40,123,55)(41,124,56)(42,125,57)(43,126,58)(44,127,59)(45,128,60)(46,129,61), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(47,138)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,101)(57,102)(58,103)(59,104)(60,105)(61,106)(62,107)(63,108)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,130)(86,131)(87,132)(88,133)(89,134)(90,135)(91,136)(92,137) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)], [(1,130,62),(2,131,63),(3,132,64),(4,133,65),(5,134,66),(6,135,67),(7,136,68),(8,137,69),(9,138,70),(10,93,71),(11,94,72),(12,95,73),(13,96,74),(14,97,75),(15,98,76),(16,99,77),(17,100,78),(18,101,79),(19,102,80),(20,103,81),(21,104,82),(22,105,83),(23,106,84),(24,107,85),(25,108,86),(26,109,87),(27,110,88),(28,111,89),(29,112,90),(30,113,91),(31,114,92),(32,115,47),(33,116,48),(34,117,49),(35,118,50),(36,119,51),(37,120,52),(38,121,53),(39,122,54),(40,123,55),(41,124,56),(42,125,57),(43,126,58),(44,127,59),(45,128,60),(46,129,61)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(47,138),(48,93),(49,94),(50,95),(51,96),(52,97),(53,98),(54,99),(55,100),(56,101),(57,102),(58,103),(59,104),(60,105),(61,106),(62,107),(63,108),(64,109),(65,110),(66,111),(67,112),(68,113),(69,114),(70,115),(71,116),(72,117),(73,118),(74,119),(75,120),(76,121),(77,122),(78,123),(79,124),(80,125),(81,126),(82,127),(83,128),(84,129),(85,130),(86,131),(87,132),(88,133),(89,134),(90,135),(91,136),(92,137)]])
138 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 6 | 23A | ··· | 23V | 46A | ··· | 46V | 46W | ··· | 46BN | 69A | ··· | 69V | 138A | ··· | 138V |
order | 1 | 2 | 2 | 2 | 3 | 6 | 23 | ··· | 23 | 46 | ··· | 46 | 46 | ··· | 46 | 69 | ··· | 69 | 138 | ··· | 138 |
size | 1 | 1 | 3 | 3 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | ··· | 2 | 2 | ··· | 2 |
138 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C23 | C46 | C46 | S3 | D6 | S3×C23 | S3×C46 |
kernel | S3×C46 | S3×C23 | C138 | D6 | S3 | C6 | C46 | C23 | C2 | C1 |
# reps | 1 | 2 | 1 | 22 | 44 | 22 | 1 | 1 | 22 | 22 |
Matrix representation of S3×C46 ►in GL2(𝔽47) generated by
43 | 0 |
0 | 43 |
0 | 12 |
43 | 46 |
1 | 12 |
0 | 46 |
G:=sub<GL(2,GF(47))| [43,0,0,43],[0,43,12,46],[1,0,12,46] >;
S3×C46 in GAP, Magma, Sage, TeX
S_3\times C_{46}
% in TeX
G:=Group("S3xC46");
// GroupNames label
G:=SmallGroup(276,8);
// by ID
G=gap.SmallGroup(276,8);
# by ID
G:=PCGroup([4,-2,-2,-23,-3,2947]);
// Polycyclic
G:=Group<a,b,c|a^46=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export