direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: D4×C34, C23⋊C34, C68⋊4C22, C34.11C23, C4⋊(C2×C34), (C2×C68)⋊6C2, (C2×C4)⋊2C34, C22⋊(C2×C34), (C22×C34)⋊1C2, (C2×C34)⋊2C22, C2.1(C22×C34), SmallGroup(272,47)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×C34
G = < a,b,c | a34=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 70 in 54 conjugacy classes, 38 normal (10 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C2×D4, C17, C34, C34, C34, C68, C2×C34, C2×C34, C2×C34, C2×C68, D4×C17, C22×C34, D4×C34
Quotients: C1, C2, C22, D4, C23, C2×D4, C17, C34, C2×C34, D4×C17, C22×C34, D4×C34
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 116 56 94)(2 117 57 95)(3 118 58 96)(4 119 59 97)(5 120 60 98)(6 121 61 99)(7 122 62 100)(8 123 63 101)(9 124 64 102)(10 125 65 69)(11 126 66 70)(12 127 67 71)(13 128 68 72)(14 129 35 73)(15 130 36 74)(16 131 37 75)(17 132 38 76)(18 133 39 77)(19 134 40 78)(20 135 41 79)(21 136 42 80)(22 103 43 81)(23 104 44 82)(24 105 45 83)(25 106 46 84)(26 107 47 85)(27 108 48 86)(28 109 49 87)(29 110 50 88)(30 111 51 89)(31 112 52 90)(32 113 53 91)(33 114 54 92)(34 115 55 93)
(1 133)(2 134)(3 135)(4 136)(5 103)(6 104)(7 105)(8 106)(9 107)(10 108)(11 109)(12 110)(13 111)(14 112)(15 113)(16 114)(17 115)(18 116)(19 117)(20 118)(21 119)(22 120)(23 121)(24 122)(25 123)(26 124)(27 125)(28 126)(29 127)(30 128)(31 129)(32 130)(33 131)(34 132)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 69)(49 70)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)(56 77)(57 78)(58 79)(59 80)(60 81)(61 82)(62 83)(63 84)(64 85)(65 86)(66 87)(67 88)(68 89)
G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,116,56,94)(2,117,57,95)(3,118,58,96)(4,119,59,97)(5,120,60,98)(6,121,61,99)(7,122,62,100)(8,123,63,101)(9,124,64,102)(10,125,65,69)(11,126,66,70)(12,127,67,71)(13,128,68,72)(14,129,35,73)(15,130,36,74)(16,131,37,75)(17,132,38,76)(18,133,39,77)(19,134,40,78)(20,135,41,79)(21,136,42,80)(22,103,43,81)(23,104,44,82)(24,105,45,83)(25,106,46,84)(26,107,47,85)(27,108,48,86)(28,109,49,87)(29,110,50,88)(30,111,51,89)(31,112,52,90)(32,113,53,91)(33,114,54,92)(34,115,55,93), (1,133)(2,134)(3,135)(4,136)(5,103)(6,104)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,113)(16,114)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,116,56,94)(2,117,57,95)(3,118,58,96)(4,119,59,97)(5,120,60,98)(6,121,61,99)(7,122,62,100)(8,123,63,101)(9,124,64,102)(10,125,65,69)(11,126,66,70)(12,127,67,71)(13,128,68,72)(14,129,35,73)(15,130,36,74)(16,131,37,75)(17,132,38,76)(18,133,39,77)(19,134,40,78)(20,135,41,79)(21,136,42,80)(22,103,43,81)(23,104,44,82)(24,105,45,83)(25,106,46,84)(26,107,47,85)(27,108,48,86)(28,109,49,87)(29,110,50,88)(30,111,51,89)(31,112,52,90)(32,113,53,91)(33,114,54,92)(34,115,55,93), (1,133)(2,134)(3,135)(4,136)(5,103)(6,104)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,113)(16,114)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,116,56,94),(2,117,57,95),(3,118,58,96),(4,119,59,97),(5,120,60,98),(6,121,61,99),(7,122,62,100),(8,123,63,101),(9,124,64,102),(10,125,65,69),(11,126,66,70),(12,127,67,71),(13,128,68,72),(14,129,35,73),(15,130,36,74),(16,131,37,75),(17,132,38,76),(18,133,39,77),(19,134,40,78),(20,135,41,79),(21,136,42,80),(22,103,43,81),(23,104,44,82),(24,105,45,83),(25,106,46,84),(26,107,47,85),(27,108,48,86),(28,109,49,87),(29,110,50,88),(30,111,51,89),(31,112,52,90),(32,113,53,91),(33,114,54,92),(34,115,55,93)], [(1,133),(2,134),(3,135),(4,136),(5,103),(6,104),(7,105),(8,106),(9,107),(10,108),(11,109),(12,110),(13,111),(14,112),(15,113),(16,114),(17,115),(18,116),(19,117),(20,118),(21,119),(22,120),(23,121),(24,122),(25,123),(26,124),(27,125),(28,126),(29,127),(30,128),(31,129),(32,130),(33,131),(34,132),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,69),(49,70),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76),(56,77),(57,78),(58,79),(59,80),(60,81),(61,82),(62,83),(63,84),(64,85),(65,86),(66,87),(67,88),(68,89)]])
170 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 17A | ··· | 17P | 34A | ··· | 34AV | 34AW | ··· | 34DH | 68A | ··· | 68AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 17 | ··· | 17 | 34 | ··· | 34 | 34 | ··· | 34 | 68 | ··· | 68 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
170 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C17 | C34 | C34 | C34 | D4 | D4×C17 |
kernel | D4×C34 | C2×C68 | D4×C17 | C22×C34 | C2×D4 | C2×C4 | D4 | C23 | C34 | C2 |
# reps | 1 | 1 | 4 | 2 | 16 | 16 | 64 | 32 | 2 | 32 |
Matrix representation of D4×C34 ►in GL3(𝔽137) generated by
136 | 0 | 0 |
0 | 81 | 0 |
0 | 0 | 81 |
136 | 0 | 0 |
0 | 70 | 84 |
0 | 2 | 67 |
136 | 0 | 0 |
0 | 67 | 52 |
0 | 135 | 70 |
G:=sub<GL(3,GF(137))| [136,0,0,0,81,0,0,0,81],[136,0,0,0,70,2,0,84,67],[136,0,0,0,67,135,0,52,70] >;
D4×C34 in GAP, Magma, Sage, TeX
D_4\times C_{34}
% in TeX
G:=Group("D4xC34");
// GroupNames label
G:=SmallGroup(272,47);
// by ID
G=gap.SmallGroup(272,47);
# by ID
G:=PCGroup([5,-2,-2,-2,-17,-2,1381]);
// Polycyclic
G:=Group<a,b,c|a^34=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations