direct product, metacyclic, supersoluble, monomial
Aliases: D5×3- 1+2, C45⋊3C6, (C9×D5)⋊C3, (C3×C15).C6, C9⋊2(C3×D5), C32.(C3×D5), C15.3(C3×C6), (C32×D5).C3, C5⋊(C2×3- 1+2), C3.3(C32×D5), (C3×D5).3C32, (C5×3- 1+2)⋊3C2, SmallGroup(270,7)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C15 — C45 — C5×3- 1+2 — D5×3- 1+2 |
Generators and relations for D5×3- 1+2
G = < a,b,c,d | a5=b2=c9=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
(1 36 23 39 15)(2 28 24 40 16)(3 29 25 41 17)(4 30 26 42 18)(5 31 27 43 10)(6 32 19 44 11)(7 33 20 45 12)(8 34 21 37 13)(9 35 22 38 14)
(1 15)(2 16)(3 17)(4 18)(5 10)(6 11)(7 12)(8 13)(9 14)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 37)(35 38)(36 39)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 22 25)(21 27 24)(28 34 31)(29 32 35)(37 43 40)(38 41 44)
G:=sub<Sym(45)| (1,36,23,39,15)(2,28,24,40,16)(3,29,25,41,17)(4,30,26,42,18)(5,31,27,43,10)(6,32,19,44,11)(7,33,20,45,12)(8,34,21,37,13)(9,35,22,38,14), (1,15)(2,16)(3,17)(4,18)(5,10)(6,11)(7,12)(8,13)(9,14)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,22,25)(21,27,24)(28,34,31)(29,32,35)(37,43,40)(38,41,44)>;
G:=Group( (1,36,23,39,15)(2,28,24,40,16)(3,29,25,41,17)(4,30,26,42,18)(5,31,27,43,10)(6,32,19,44,11)(7,33,20,45,12)(8,34,21,37,13)(9,35,22,38,14), (1,15)(2,16)(3,17)(4,18)(5,10)(6,11)(7,12)(8,13)(9,14)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,22,25)(21,27,24)(28,34,31)(29,32,35)(37,43,40)(38,41,44) );
G=PermutationGroup([[(1,36,23,39,15),(2,28,24,40,16),(3,29,25,41,17),(4,30,26,42,18),(5,31,27,43,10),(6,32,19,44,11),(7,33,20,45,12),(8,34,21,37,13),(9,35,22,38,14)], [(1,15),(2,16),(3,17),(4,18),(5,10),(6,11),(7,12),(8,13),(9,14),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,37),(35,38),(36,39)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,22,25),(21,27,24),(28,34,31),(29,32,35),(37,43,40),(38,41,44)]])
44 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 5A | 5B | 6A | 6B | 6C | 6D | 9A | ··· | 9F | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 18A | ··· | 18F | 45A | ··· | 45L |
order | 1 | 2 | 3 | 3 | 3 | 3 | 5 | 5 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 18 | ··· | 18 | 45 | ··· | 45 |
size | 1 | 5 | 1 | 1 | 3 | 3 | 2 | 2 | 5 | 5 | 15 | 15 | 3 | ··· | 3 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 15 | ··· | 15 | 6 | ··· | 6 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 |
type | + | + | + | |||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | D5 | C3×D5 | C3×D5 | 3- 1+2 | C2×3- 1+2 | D5×3- 1+2 |
kernel | D5×3- 1+2 | C5×3- 1+2 | C9×D5 | C32×D5 | C45 | C3×C15 | 3- 1+2 | C9 | C32 | D5 | C5 | C1 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 2 | 12 | 4 | 2 | 2 | 4 |
Matrix representation of D5×3- 1+2 ►in GL5(𝔽181)
0 | 1 | 0 | 0 | 0 |
180 | 167 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
167 | 180 | 0 | 0 | 0 |
0 | 0 | 180 | 0 | 0 |
0 | 0 | 0 | 180 | 0 |
0 | 0 | 0 | 0 | 180 |
48 | 0 | 0 | 0 | 0 |
0 | 48 | 0 | 0 | 0 |
0 | 0 | 1 | 110 | 180 |
0 | 0 | 137 | 48 | 0 |
0 | 0 | 47 | 31 | 132 |
132 | 0 | 0 | 0 | 0 |
0 | 132 | 0 | 0 | 0 |
0 | 0 | 1 | 110 | 0 |
0 | 0 | 0 | 132 | 121 |
0 | 0 | 0 | 0 | 48 |
G:=sub<GL(5,GF(181))| [0,180,0,0,0,1,167,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,167,0,0,0,0,180,0,0,0,0,0,180,0,0,0,0,0,180,0,0,0,0,0,180],[48,0,0,0,0,0,48,0,0,0,0,0,1,137,47,0,0,110,48,31,0,0,180,0,132],[132,0,0,0,0,0,132,0,0,0,0,0,1,0,0,0,0,110,132,0,0,0,0,121,48] >;
D5×3- 1+2 in GAP, Magma, Sage, TeX
D_5\times 3_-^{1+2}
% in TeX
G:=Group("D5xES-(3,1)");
// GroupNames label
G:=SmallGroup(270,7);
// by ID
G=gap.SmallGroup(270,7);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-5,187,57,5404]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^9=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export