Copied to
clipboard

G = C15×D9order 270 = 2·33·5

Direct product of C15 and D9

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C15×D9, C456C6, C93C30, (C3×C9)⋊2C10, (C3×C45)⋊4C2, C3.1(S3×C15), C15.5(C3×S3), (C3×C15).5S3, C32.2(C5×S3), SmallGroup(270,8)

Series: Derived Chief Lower central Upper central

C1C9 — C15×D9
C1C3C9C45C3×C45 — C15×D9
C9 — C15×D9
C1C15

Generators and relations for C15×D9
 G = < a,b,c | a15=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

9C2
2C3
3S3
9C6
2C9
9C10
2C15
3C3×S3
3C5×S3
9C30
2C45
3S3×C15

Smallest permutation representation of C15×D9
On 90 points
Generators in S90
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)
(1 50 20 11 60 30 6 55 25)(2 51 21 12 46 16 7 56 26)(3 52 22 13 47 17 8 57 27)(4 53 23 14 48 18 9 58 28)(5 54 24 15 49 19 10 59 29)(31 79 66 36 84 71 41 89 61)(32 80 67 37 85 72 42 90 62)(33 81 68 38 86 73 43 76 63)(34 82 69 39 87 74 44 77 64)(35 83 70 40 88 75 45 78 65)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 76)(29 77)(30 78)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 61)(57 62)(58 63)(59 64)(60 65)

G:=sub<Sym(90)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,50,20,11,60,30,6,55,25)(2,51,21,12,46,16,7,56,26)(3,52,22,13,47,17,8,57,27)(4,53,23,14,48,18,9,58,28)(5,54,24,15,49,19,10,59,29)(31,79,66,36,84,71,41,89,61)(32,80,67,37,85,72,42,90,62)(33,81,68,38,86,73,43,76,63)(34,82,69,39,87,74,44,77,64)(35,83,70,40,88,75,45,78,65), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,76)(29,77)(30,78)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,61)(57,62)(58,63)(59,64)(60,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,50,20,11,60,30,6,55,25)(2,51,21,12,46,16,7,56,26)(3,52,22,13,47,17,8,57,27)(4,53,23,14,48,18,9,58,28)(5,54,24,15,49,19,10,59,29)(31,79,66,36,84,71,41,89,61)(32,80,67,37,85,72,42,90,62)(33,81,68,38,86,73,43,76,63)(34,82,69,39,87,74,44,77,64)(35,83,70,40,88,75,45,78,65), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,76)(29,77)(30,78)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,61)(57,62)(58,63)(59,64)(60,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)], [(1,50,20,11,60,30,6,55,25),(2,51,21,12,46,16,7,56,26),(3,52,22,13,47,17,8,57,27),(4,53,23,14,48,18,9,58,28),(5,54,24,15,49,19,10,59,29),(31,79,66,36,84,71,41,89,61),(32,80,67,37,85,72,42,90,62),(33,81,68,38,86,73,43,76,63),(34,82,69,39,87,74,44,77,64),(35,83,70,40,88,75,45,78,65)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,76),(29,77),(30,78),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,61),(57,62),(58,63),(59,64),(60,65)]])

90 conjugacy classes

class 1  2 3A3B3C3D3E5A5B5C5D6A6B9A···9I10A10B10C10D15A···15H15I···15T30A···30H45A···45AJ
order12333335555669···91010101015···1515···1530···3045···45
size19112221111992···299991···12···29···92···2

90 irreducible representations

dim1111111122222222
type++++
imageC1C2C3C5C6C10C15C30S3D9C3×S3C5×S3C3×D9C5×D9S3×C15C15×D9
kernelC15×D9C3×C45C5×D9C3×D9C45C3×C9D9C9C3×C15C15C15C32C5C3C3C1
# reps112424881324612824

Matrix representation of C15×D9 in GL3(𝔽181) generated by

2700
01320
00132
,
100
0800
05643
,
100
07230
0147109
G:=sub<GL(3,GF(181))| [27,0,0,0,132,0,0,0,132],[1,0,0,0,80,56,0,0,43],[1,0,0,0,72,147,0,30,109] >;

C15×D9 in GAP, Magma, Sage, TeX

C_{15}\times D_9
% in TeX

G:=Group("C15xD9");
// GroupNames label

G:=SmallGroup(270,8);
// by ID

G=gap.SmallGroup(270,8);
# by ID

G:=PCGroup([5,-2,-3,-5,-3,-3,3003,138,4504]);
// Polycyclic

G:=Group<a,b,c|a^15=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C15×D9 in TeX

׿
×
𝔽