Copied to
clipboard

G = D68⋊C2order 272 = 24·17

4th semidirect product of D68 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D684C2, Q82D17, C4.7D34, C34.8C23, C68.7C22, D34.3C22, Dic17.9C22, (C4×D17)⋊3C2, C173(C4○D4), (Q8×C17)⋊3C2, C2.9(C22×D17), SmallGroup(272,43)

Series: Derived Chief Lower central Upper central

C1C34 — D68⋊C2
C1C17C34D34C4×D17 — D68⋊C2
C17C34 — D68⋊C2
C1C2Q8

Generators and relations for D68⋊C2
 G = < a,b,c | a68=b2=c2=1, bab=a-1, cac=a33, cbc=a66b >

34C2
34C2
34C2
17C22
17C22
17C22
17C4
2D17
2D17
2D17
17C2×C4
17D4
17D4
17C2×C4
17D4
17C2×C4
17C4○D4

Smallest permutation representation of D68⋊C2
On 136 points
Generators in S136
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 68)(2 67)(3 66)(4 65)(5 64)(6 63)(7 62)(8 61)(9 60)(10 59)(11 58)(12 57)(13 56)(14 55)(15 54)(16 53)(17 52)(18 51)(19 50)(20 49)(21 48)(22 47)(23 46)(24 45)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(69 94)(70 93)(71 92)(72 91)(73 90)(74 89)(75 88)(76 87)(77 86)(78 85)(79 84)(80 83)(81 82)(95 136)(96 135)(97 134)(98 133)(99 132)(100 131)(101 130)(102 129)(103 128)(104 127)(105 126)(106 125)(107 124)(108 123)(109 122)(110 121)(111 120)(112 119)(113 118)(114 117)(115 116)
(1 99)(2 132)(3 97)(4 130)(5 95)(6 128)(7 93)(8 126)(9 91)(10 124)(11 89)(12 122)(13 87)(14 120)(15 85)(16 118)(17 83)(18 116)(19 81)(20 114)(21 79)(22 112)(23 77)(24 110)(25 75)(26 108)(27 73)(28 106)(29 71)(30 104)(31 69)(32 102)(33 135)(34 100)(35 133)(36 98)(37 131)(38 96)(39 129)(40 94)(41 127)(42 92)(43 125)(44 90)(45 123)(46 88)(47 121)(48 86)(49 119)(50 84)(51 117)(52 82)(53 115)(54 80)(55 113)(56 78)(57 111)(58 76)(59 109)(60 74)(61 107)(62 72)(63 105)(64 70)(65 103)(66 136)(67 101)(68 134)

G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116), (1,99)(2,132)(3,97)(4,130)(5,95)(6,128)(7,93)(8,126)(9,91)(10,124)(11,89)(12,122)(13,87)(14,120)(15,85)(16,118)(17,83)(18,116)(19,81)(20,114)(21,79)(22,112)(23,77)(24,110)(25,75)(26,108)(27,73)(28,106)(29,71)(30,104)(31,69)(32,102)(33,135)(34,100)(35,133)(36,98)(37,131)(38,96)(39,129)(40,94)(41,127)(42,92)(43,125)(44,90)(45,123)(46,88)(47,121)(48,86)(49,119)(50,84)(51,117)(52,82)(53,115)(54,80)(55,113)(56,78)(57,111)(58,76)(59,109)(60,74)(61,107)(62,72)(63,105)(64,70)(65,103)(66,136)(67,101)(68,134)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116), (1,99)(2,132)(3,97)(4,130)(5,95)(6,128)(7,93)(8,126)(9,91)(10,124)(11,89)(12,122)(13,87)(14,120)(15,85)(16,118)(17,83)(18,116)(19,81)(20,114)(21,79)(22,112)(23,77)(24,110)(25,75)(26,108)(27,73)(28,106)(29,71)(30,104)(31,69)(32,102)(33,135)(34,100)(35,133)(36,98)(37,131)(38,96)(39,129)(40,94)(41,127)(42,92)(43,125)(44,90)(45,123)(46,88)(47,121)(48,86)(49,119)(50,84)(51,117)(52,82)(53,115)(54,80)(55,113)(56,78)(57,111)(58,76)(59,109)(60,74)(61,107)(62,72)(63,105)(64,70)(65,103)(66,136)(67,101)(68,134) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,68),(2,67),(3,66),(4,65),(5,64),(6,63),(7,62),(8,61),(9,60),(10,59),(11,58),(12,57),(13,56),(14,55),(15,54),(16,53),(17,52),(18,51),(19,50),(20,49),(21,48),(22,47),(23,46),(24,45),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(69,94),(70,93),(71,92),(72,91),(73,90),(74,89),(75,88),(76,87),(77,86),(78,85),(79,84),(80,83),(81,82),(95,136),(96,135),(97,134),(98,133),(99,132),(100,131),(101,130),(102,129),(103,128),(104,127),(105,126),(106,125),(107,124),(108,123),(109,122),(110,121),(111,120),(112,119),(113,118),(114,117),(115,116)], [(1,99),(2,132),(3,97),(4,130),(5,95),(6,128),(7,93),(8,126),(9,91),(10,124),(11,89),(12,122),(13,87),(14,120),(15,85),(16,118),(17,83),(18,116),(19,81),(20,114),(21,79),(22,112),(23,77),(24,110),(25,75),(26,108),(27,73),(28,106),(29,71),(30,104),(31,69),(32,102),(33,135),(34,100),(35,133),(36,98),(37,131),(38,96),(39,129),(40,94),(41,127),(42,92),(43,125),(44,90),(45,123),(46,88),(47,121),(48,86),(49,119),(50,84),(51,117),(52,82),(53,115),(54,80),(55,113),(56,78),(57,111),(58,76),(59,109),(60,74),(61,107),(62,72),(63,105),(64,70),(65,103),(66,136),(67,101),(68,134)]])

50 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E17A···17H34A···34H68A···68X
order122224444417···1734···3468···68
size1134343422217172···22···24···4

50 irreducible representations

dim11112224
type+++++++
imageC1C2C2C2C4○D4D17D34D68⋊C2
kernelD68⋊C2C4×D17D68Q8×C17C17Q8C4C1
# reps133128248

Matrix representation of D68⋊C2 in GL4(𝔽137) generated by

1062100
11610700
0001
001360
,
1062100
133100
0001
0010
,
136000
13100
000100
00370
G:=sub<GL(4,GF(137))| [106,116,0,0,21,107,0,0,0,0,0,136,0,0,1,0],[106,13,0,0,21,31,0,0,0,0,0,1,0,0,1,0],[136,13,0,0,0,1,0,0,0,0,0,37,0,0,100,0] >;

D68⋊C2 in GAP, Magma, Sage, TeX

D_{68}\rtimes C_2
% in TeX

G:=Group("D68:C2");
// GroupNames label

G:=SmallGroup(272,43);
// by ID

G=gap.SmallGroup(272,43);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,46,182,97,42,6404]);
// Polycyclic

G:=Group<a,b,c|a^68=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^33,c*b*c=a^66*b>;
// generators/relations

Export

Subgroup lattice of D68⋊C2 in TeX

׿
×
𝔽