direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8×D17, C4.6D34, Dic34⋊4C2, C68.6C22, C34.7C23, D34.9C22, Dic17.3C22, C17⋊2(C2×Q8), (Q8×C17)⋊2C2, (C4×D17).1C2, C2.8(C22×D17), SmallGroup(272,42)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8×D17
G = < a,b,c,d | a4=c17=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 53 27 43)(2 54 28 44)(3 55 29 45)(4 56 30 46)(5 57 31 47)(6 58 32 48)(7 59 33 49)(8 60 34 50)(9 61 18 51)(10 62 19 35)(11 63 20 36)(12 64 21 37)(13 65 22 38)(14 66 23 39)(15 67 24 40)(16 68 25 41)(17 52 26 42)(69 118 96 132)(70 119 97 133)(71 103 98 134)(72 104 99 135)(73 105 100 136)(74 106 101 120)(75 107 102 121)(76 108 86 122)(77 109 87 123)(78 110 88 124)(79 111 89 125)(80 112 90 126)(81 113 91 127)(82 114 92 128)(83 115 93 129)(84 116 94 130)(85 117 95 131)
(1 100 27 73)(2 101 28 74)(3 102 29 75)(4 86 30 76)(5 87 31 77)(6 88 32 78)(7 89 33 79)(8 90 34 80)(9 91 18 81)(10 92 19 82)(11 93 20 83)(12 94 21 84)(13 95 22 85)(14 96 23 69)(15 97 24 70)(16 98 25 71)(17 99 26 72)(35 128 62 114)(36 129 63 115)(37 130 64 116)(38 131 65 117)(39 132 66 118)(40 133 67 119)(41 134 68 103)(42 135 52 104)(43 136 53 105)(44 120 54 106)(45 121 55 107)(46 122 56 108)(47 123 57 109)(48 124 58 110)(49 125 59 111)(50 126 60 112)(51 127 61 113)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 26)(2 25)(3 24)(4 23)(5 22)(6 21)(7 20)(8 19)(9 18)(10 34)(11 33)(12 32)(13 31)(14 30)(15 29)(16 28)(17 27)(35 60)(36 59)(37 58)(38 57)(39 56)(40 55)(41 54)(42 53)(43 52)(44 68)(45 67)(46 66)(47 65)(48 64)(49 63)(50 62)(51 61)(69 86)(70 102)(71 101)(72 100)(73 99)(74 98)(75 97)(76 96)(77 95)(78 94)(79 93)(80 92)(81 91)(82 90)(83 89)(84 88)(85 87)(103 120)(104 136)(105 135)(106 134)(107 133)(108 132)(109 131)(110 130)(111 129)(112 128)(113 127)(114 126)(115 125)(116 124)(117 123)(118 122)(119 121)
G:=sub<Sym(136)| (1,53,27,43)(2,54,28,44)(3,55,29,45)(4,56,30,46)(5,57,31,47)(6,58,32,48)(7,59,33,49)(8,60,34,50)(9,61,18,51)(10,62,19,35)(11,63,20,36)(12,64,21,37)(13,65,22,38)(14,66,23,39)(15,67,24,40)(16,68,25,41)(17,52,26,42)(69,118,96,132)(70,119,97,133)(71,103,98,134)(72,104,99,135)(73,105,100,136)(74,106,101,120)(75,107,102,121)(76,108,86,122)(77,109,87,123)(78,110,88,124)(79,111,89,125)(80,112,90,126)(81,113,91,127)(82,114,92,128)(83,115,93,129)(84,116,94,130)(85,117,95,131), (1,100,27,73)(2,101,28,74)(3,102,29,75)(4,86,30,76)(5,87,31,77)(6,88,32,78)(7,89,33,79)(8,90,34,80)(9,91,18,81)(10,92,19,82)(11,93,20,83)(12,94,21,84)(13,95,22,85)(14,96,23,69)(15,97,24,70)(16,98,25,71)(17,99,26,72)(35,128,62,114)(36,129,63,115)(37,130,64,116)(38,131,65,117)(39,132,66,118)(40,133,67,119)(41,134,68,103)(42,135,52,104)(43,136,53,105)(44,120,54,106)(45,121,55,107)(46,122,56,108)(47,123,57,109)(48,124,58,110)(49,125,59,111)(50,126,60,112)(51,127,61,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,26)(2,25)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,27)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(69,86)(70,102)(71,101)(72,100)(73,99)(74,98)(75,97)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88)(85,87)(103,120)(104,136)(105,135)(106,134)(107,133)(108,132)(109,131)(110,130)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)>;
G:=Group( (1,53,27,43)(2,54,28,44)(3,55,29,45)(4,56,30,46)(5,57,31,47)(6,58,32,48)(7,59,33,49)(8,60,34,50)(9,61,18,51)(10,62,19,35)(11,63,20,36)(12,64,21,37)(13,65,22,38)(14,66,23,39)(15,67,24,40)(16,68,25,41)(17,52,26,42)(69,118,96,132)(70,119,97,133)(71,103,98,134)(72,104,99,135)(73,105,100,136)(74,106,101,120)(75,107,102,121)(76,108,86,122)(77,109,87,123)(78,110,88,124)(79,111,89,125)(80,112,90,126)(81,113,91,127)(82,114,92,128)(83,115,93,129)(84,116,94,130)(85,117,95,131), (1,100,27,73)(2,101,28,74)(3,102,29,75)(4,86,30,76)(5,87,31,77)(6,88,32,78)(7,89,33,79)(8,90,34,80)(9,91,18,81)(10,92,19,82)(11,93,20,83)(12,94,21,84)(13,95,22,85)(14,96,23,69)(15,97,24,70)(16,98,25,71)(17,99,26,72)(35,128,62,114)(36,129,63,115)(37,130,64,116)(38,131,65,117)(39,132,66,118)(40,133,67,119)(41,134,68,103)(42,135,52,104)(43,136,53,105)(44,120,54,106)(45,121,55,107)(46,122,56,108)(47,123,57,109)(48,124,58,110)(49,125,59,111)(50,126,60,112)(51,127,61,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,26)(2,25)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,27)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(69,86)(70,102)(71,101)(72,100)(73,99)(74,98)(75,97)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88)(85,87)(103,120)(104,136)(105,135)(106,134)(107,133)(108,132)(109,131)(110,130)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121) );
G=PermutationGroup([[(1,53,27,43),(2,54,28,44),(3,55,29,45),(4,56,30,46),(5,57,31,47),(6,58,32,48),(7,59,33,49),(8,60,34,50),(9,61,18,51),(10,62,19,35),(11,63,20,36),(12,64,21,37),(13,65,22,38),(14,66,23,39),(15,67,24,40),(16,68,25,41),(17,52,26,42),(69,118,96,132),(70,119,97,133),(71,103,98,134),(72,104,99,135),(73,105,100,136),(74,106,101,120),(75,107,102,121),(76,108,86,122),(77,109,87,123),(78,110,88,124),(79,111,89,125),(80,112,90,126),(81,113,91,127),(82,114,92,128),(83,115,93,129),(84,116,94,130),(85,117,95,131)], [(1,100,27,73),(2,101,28,74),(3,102,29,75),(4,86,30,76),(5,87,31,77),(6,88,32,78),(7,89,33,79),(8,90,34,80),(9,91,18,81),(10,92,19,82),(11,93,20,83),(12,94,21,84),(13,95,22,85),(14,96,23,69),(15,97,24,70),(16,98,25,71),(17,99,26,72),(35,128,62,114),(36,129,63,115),(37,130,64,116),(38,131,65,117),(39,132,66,118),(40,133,67,119),(41,134,68,103),(42,135,52,104),(43,136,53,105),(44,120,54,106),(45,121,55,107),(46,122,56,108),(47,123,57,109),(48,124,58,110),(49,125,59,111),(50,126,60,112),(51,127,61,113)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,26),(2,25),(3,24),(4,23),(5,22),(6,21),(7,20),(8,19),(9,18),(10,34),(11,33),(12,32),(13,31),(14,30),(15,29),(16,28),(17,27),(35,60),(36,59),(37,58),(38,57),(39,56),(40,55),(41,54),(42,53),(43,52),(44,68),(45,67),(46,66),(47,65),(48,64),(49,63),(50,62),(51,61),(69,86),(70,102),(71,101),(72,100),(73,99),(74,98),(75,97),(76,96),(77,95),(78,94),(79,93),(80,92),(81,91),(82,90),(83,89),(84,88),(85,87),(103,120),(104,136),(105,135),(106,134),(107,133),(108,132),(109,131),(110,130),(111,129),(112,128),(113,127),(114,126),(115,125),(116,124),(117,123),(118,122),(119,121)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 17A | ··· | 17H | 34A | ··· | 34H | 68A | ··· | 68X |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 17 | ··· | 17 | 34 | ··· | 34 | 68 | ··· | 68 |
size | 1 | 1 | 17 | 17 | 2 | 2 | 2 | 34 | 34 | 34 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | - | + | + | - |
image | C1 | C2 | C2 | C2 | Q8 | D17 | D34 | Q8×D17 |
kernel | Q8×D17 | Dic34 | C4×D17 | Q8×C17 | D17 | Q8 | C4 | C1 |
# reps | 1 | 3 | 3 | 1 | 2 | 8 | 24 | 8 |
Matrix representation of Q8×D17 ►in GL4(𝔽137) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 66 | 44 |
0 | 0 | 66 | 71 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 10 | 48 |
0 | 0 | 35 | 127 |
40 | 1 | 0 | 0 |
126 | 34 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
21 | 104 | 0 | 0 |
59 | 116 | 0 | 0 |
0 | 0 | 136 | 0 |
0 | 0 | 0 | 136 |
G:=sub<GL(4,GF(137))| [1,0,0,0,0,1,0,0,0,0,66,66,0,0,44,71],[1,0,0,0,0,1,0,0,0,0,10,35,0,0,48,127],[40,126,0,0,1,34,0,0,0,0,1,0,0,0,0,1],[21,59,0,0,104,116,0,0,0,0,136,0,0,0,0,136] >;
Q8×D17 in GAP, Magma, Sage, TeX
Q_8\times D_{17}
% in TeX
G:=Group("Q8xD17");
// GroupNames label
G:=SmallGroup(272,42);
// by ID
G=gap.SmallGroup(272,42);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-17,46,97,42,6404]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^17=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export